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Notations

Rm

a.c.

a.s.

iid.

r.v.

min

sup

. set of all real numbers

: transpose

. set of all real m x 1 vectors

: almost everywhere

: almost surely

: independent and identically distributed
: random variable

: distribution function

: convergence in probability to 0
: bounded in probability

: conditional least squares

: minimum, minimize

. supremum

: exponential

: belongs to
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. is a set of

. parameter space

. differential

: norm of a vector a

: absolute value of a scalar a

. indicator function of an event A
. partial derivative of ¢(v)

: second partial derivative of ¢(v)
. o-field

. expectation of ar.v. X

: conditional expectation of r.v. X with respect to F’

: variance of ar.v. X

conditional variance of r.v. X with respect to F'

covariance of X and Y

: X, converges almost surely to X

: X,, converges in probability to X

: X, converges in distribution to X

: normal distribution with mean p and variance o2
: standard normal probability distribution function

: a time series process
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{T\N} : Cramér-von Mises statistics

AR . autoregressive process

MA : moving average process

ARMA . autoregressive moving average process
TAR : Threshold autoregressive process

ARCH(p) : autoregressive conditional heteroskedastic process of order p

GARCH : generalized ARCH process



Abstract

In this thesis, the limiting Gaussian distribution of a class of Cramér-von Mises
statistics {fN} for two-sample problem pertaining to empirical processes of the
squared residuals from two independent samples of ARCH processes is elucidated.
A distinctive feature is that, unlike the residuals of ARMA processes, the asymp-
totics of {7y} depend on those of ARCH volatility estimators. Based on the
asymptotics of {fN}, we numerically assess the relative asymptotic efficiency and
ARCH volatility effect for some ARCH residual distributions. Moreover, a mea-
sure of robustness for {YA“ ~} is introduced. Then this aspect of {’_]A“ ~} based on
such residual distributions is illustrated numerically. In contrast with the i.i.d.
or ARMA settings, these studies illuminate some interesting features of ARCH

residuals.
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Key phrases

ARMA process; ARCH process; squared residuals; empirical process; two-sample
Cramér-von Mises statistic; asymptotic normality; asymptotic relative efficiency;

ARCH volatility effect; robustness.
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Preface

In the ii.d. settings, two-sample problem is one of the important statistical
problems. For this problem, the study of the asymptotic properties based on
the celebrated Cramér-von Mises statistics is fundamental and an essential part
of nonparametric statistics. Many researchers have contributed to their develop-
ment, and numerous theorems have been formulated in many testing problems.
Most of the techniques employed in one-sample case have very close counterparts
in the two-sample situation.

For a two-sample Cramér-von Mises statistic in the i.i.d. settings, Anderson
(1962) derived the exact distribution and he compared its limiting distribution
with the exact one, and found that a good approximation to the exact distribution
for moderate sample sizes. He also reported that the accuracy of his approxima-
tion is better than that of the two-sample Kolmogrov-Smirnov statistics studied
by Hodges (1957). An excellent account of Cramér-von Mises tests is given in
Durbin (1973) and we refer the reader to this reference for details and further
references.

The main object of this thesis is to elucidate the asymptotic theory of the
two-sample Cramér-von Mises statistics {fN} for ARCH residual empirical pro-
cesses based on the techniques of Chernoff and Savage (1958) and Horvath et al.
(2001). Since the asymptotics of the residual empirical processes are different
from those for the usual ARMA case, the limiting distribution of {T\N} is greatly
different from that of ARMA case (of course i.i.d. case). More concretely, the

thesis is organized as follows.

viii



Chapter 1 provides the introduction and summary of the thesis. It briefly
discusses some basic and important results, which will help to better understand
the main result formulated in this thesis.

Chapter 2 gives the setting of {fN} pertaining to empirical processes based
on the squared residuals from two independent samples of ARCH(p) processes
and establishes its limiting Gaussian distribution.

This result, in Chapter 3 facilitates the study of asymptotic performance of
{fN}, like the relative asymptotic efficiency and ARCH volatility effect for some
ARCH residual distributions. Moreover, we introduce a robustness measure for
{T\N} by means of the influence function. Then this aspect of {fN} based on such
residual distributions is illustrated by simulations.

Chapter 4 gives the proof of our theorem formulated in Chapter 2.

Finally, Chapter 5 provides the concluding remarks and gives a brief outline

of the related research that can be carried out in future.
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Chapter 1

Introduction and Summary

In this chapter, we provide the introduction and summary to the thesis. In par-
ticular, the preliminary concepts, CLS estimation, ARCH processes, background
and related work, and motivation. These aspects facilitates the understanding of

the main result (Theorem 2) given in Chapter 2.

1.1 Preliminary Concepts

1.1.1 Time Series Analysis

A time series {X,} is a sequence of values of a variable at equally spaced time in-
terval ¢t. Statisticians usually view a time series as a realization from a stochastic
process. One distinguishing feature in time series is that the records are usu-
ally dependent. Due to different applications, the data may be collected hourly,
daily weekly, monthly, or yearly, and so on. The objectives of time series analysis
are diverse, depending on the background of applications. The main objectives
of time series analysis are to understand the underlying dynamics and structure

that produced the observed data, forecast future events, and control future events



via intervention. Time series analysis is used for many applications such as eco-
nomic forecasting, sales forecasting, budgetary analysis, stock market analysis,
yield projections, process and quality control, inventory studies, workload pro-
jections, utility studies, census studies and so forth.

A common assumption in many time series techniques is that the data is
stationary. A stationary process has the property that the mean, variance and
autocorrelation structure do not change overtime. Stationarity can be defined in
precise mathematical terms, but for our purpose we mean a flat looking series,
without trend, constant variance over time, a constant autocorrelation structure
over time and no periodic fluctuations (seasonality).

A Discrete-time series is one in which the set ¢ of times at which observations
are made at fixed time intervals, e.g., t = 1,...,m. A Continuous-time series is
obtained when observations are recorded continuously over some time interval,

e.g., t=1[0,1].

Linear Time Series Models

The most popular class of linear time series models is the autoregressive moving
average (ARMA) models, which includes the autoregressive (AR) and moving
average (MA) models as special cases. The ARMA model is the most commonly
used to model linear dynamic structures to depict linear relationships among

lagged variables, and to serve as vehicles for linear forecasting.

Nonlinear Time Series Models

The long-lasting popularity of ARMA models convincingly justifies the usefulness
of linear models for analyzing time series data. Nevertheless, in view of the fact
that any statistical model is an approximation to the real world, a linear model
is merely a first step in representing an unknown dynamic relationship in terms

of a mathematical formula. The truth is that the world is nonlinear! Therefore,



it is not surprising that there exists an abundance of empirical evidence indi-
cating the limitation of the linear ARMA family, when applied to the field of
financial and monetary economics. To model a number of nonlinear features such
as dependence beyond linear correlation, we need to appeal to nonlinear models.
Several typical examples of nonlinear models are ARCH, Threshold autoregres-
sive (TAR), generalized autoregressive conditional heteroskedastic (GARCH) and
exponential ARCH models.

1.1.2 Convergence and Bounded in Probability

Concepts of relative magnitude or order of magnitude are useful in investigating
limiting behavior of r.v.’s. We first define the concepts of order as used in real
analysis. Let {a,}>2, be a sequence of real numbers and {b,}°°, be a sequence

of positive real numbers (see e.g., Sen and Singer (1993)).

Convergence in Probability to Zero

Definition 1. We say that a,, converges in probability to zero, written a, = 0,(1)

or a, 2 0, if for every e > 0,
P(la,| >€) —0 as n— oo.
Definition 2. We say that a,, = o(b,) as n — oo if

an /by, — 0.

When a,, and b,, tend to infinity, this states that a,, tends to infinity more slower

than b,; when both tends to 0, it states that a,, tends to 0 much faster than b,.

Note: o(a,) denotes any quantity tending to 0 faster than a,,.



Bounded in Probability

Definition 3. A sequence {a,} is bounded in probability (or tight), written
a, = Op(1) if for every e > 0, there exists d(¢) € (0,00) such that

P(lan| > d(€)) <€ for all n.
Note:
1. a, = O(b,) means that a, is of order smaller than or equal to that of b,.
2. a, = O(by,) if |a,/by| is bounded.
Related Properties:

(i) a, converges in probability to a, a € R, written a, — a, if and only if

a, —a = o0,(1).
(i) @, = 0,(b,) if and only if b, 'a, = 0,(1).

(iit) a, = O,(b,) if and only if b, 'a,, = O,(1).

1.1.3 Taylor Expansion in Probability

Let {X,} be a sequence of random variables such that X,, = a + O,(1), where
a € R. If g is continuous at a then g(X,) = g(a) + o0,(1). If we strengthen the
assumptions on g to include the existence of derivatives, then it is possible to
derive probabilistic analogues of the Taylor expansions of non-random functions
about a given point a. Now, X,, = a + O,(r,), where 0 < r, — 0asn — oo. If g

is a function with s derivatives at a, then,
5 g(j)(a) ; .
G(Xn) - Z T(Xn - CL) + Op(rn)a
§=0

where g¥) is the j derivative of g and ¢g(® = g.



1.1.4 Empirical Distribution Function

Let X be a real-valued r.v. with d.f. F(= {F(x) : x € R}). Consider a sam-
ple of m iid. r.v.s {Xy,Xy,..X,,} drawn from the d.f. F. Write F,,(x) =
m~ iH{XiSaz}- Then m#F,,(z) is the number of X/s, 1 <1i < m that are < z.
The gtiantity F,.(z) is called the sample or empirical distribution function. We
note that 0 < F,,(z) < 1 for all z, and moreover, that F,, is right continuous,
nondecreasing, and F),,(—oo) = 0 and F),(c0) = 1.

If Xy, X2y, ..., X(m) is the ordered statistic for X, Xy, ..., X;,, then

0, if z< X(l)
Fm(ﬂf) = %, if X(k) <z < X(k+1) (k’ =1,2,...m— 1)
1, if x> X(m)

The r.v. F,,(x) has the probability function

Pl o) = L] = (") ir@pi - P, =00,

m j
with
BEa(@) = m™Y Bllpex} = m S PLX. < o} = Fla),
Var(Eu(e) F(x)iﬁ:; Fla)
and
E([Fule) - F@)H[Fuly) - Flp)y = “OUZEWE

It is also known that

E(z) 25 F(z) asm — oo,

Vm[Ey(z) — F(z)]
VE(@)[1 - F(z)]

(see e.g., Sen and Singer (1993)).

L N(0,1) asm — oo,



1.2 Conditional Least Squares Estimation

In this section, we state Tjostheim’s theorem (1986) which was essentially ob-
tained by reformulating and extending the arguments of Klimko and Nelson
(1978) to nonlinear time series.

Let {X;;t = 0,£1,...} be a strictly stationary and ergodic process taking
values in RP and defined on the probability space (€2, F, P). Here, {X;} is pos-
sibly a strictly stationary ergodic nonlinear time series. In addition, suppose
that F{||X;||*} < oo so that {X;} is second order stationary, where ||.|| denotes
the Euclidean norm. We assume that observations (Xi, ..., X,) are available.
The probability distribution of (X7, ..., X,,) is specified by unknown parameter
0 = (01,....,0,)7 € © C R Tts true value is denoted by #°. Then consider a
general real-valued penalty function Q,(0) = Q,, (X, ..., X;;; #) depending on the
observations and 6 € ©.

Let us now specify the penalty function. Let F;(m) be the o-field generated
by {Xs; t —m < s < t}, where m is an appropriate integer. If {X,;} is a non-
linear autoregressive model of order k, we can take m = k. Let Xﬂt_l(e) =
Eo{X;|Fi—1(m)} be an optimal one-step least squares predictor of X; based on
Xi 1,..., X¢—m. Then the penalty function becomes

Qu(0) = Y {Xi = Xy (0} {X: = Xypr (0)}.

t=m+1

The conditional least squares (CLS) estimator 0" of 6 is defined by
j(CL) _ :
0, arg min Q,.(0).

Hence, we have the following theorem.

Theorem 1. (Tjostheim, 1986). Suppose that {X;} is a p-dimensional strictly
stationary process with E{|| X;||*} < oo and that Xt‘t_l(Q) = Eo{Xy|Fi—1(m)} is

almost surely three times continuously differentiable with respect to 0 in an open



set © containing 6°. Moreover, suppose that the following conditions hold:

(i)

2 82 B
}<oo and E{H@H@@ Xije— 1(6°)

2
b<oo

(ii) The vectors 0Xy;—1(6°)/00;, i = 1,...,p, are linearly independent in the

{0

fori,j=1,....p

sense that if cy, ..., cp, are arbitrary real numbers such that
E p 0 —X (6°) : =0
— 69 tlt—1 — Y
thency =---=¢, =0.

(iii) For 6 € ©, there exist functions G* (X1,...,X,_1) and H'*(Xy,...,X,)

such that
9 or P ijk ijk
%tht_l(e)(?@ aekXt\t 10)| <G5, BE(GE) < oo,
. o3 . g y
X—X&YL———X9‘<Hﬂ E(H"") < o0,
X, = KO0 e K] < 1S B

fori,j k=1,...p.
(i)
9 0 o 0
R = FE agXlt HOOHX — X (07)}

~ 0 ~
X{Xt - Xttl(e())}T%thtl(eo)} < Q.

Then there exists a sequence of estimators 0" such that 6% 2 g0

asn — oo,
and for any € > 0, there ezists an event & with P(€) > 1 — € and an ngy such that

on &, for n > ny, (8/89)Qn(é,(lcm) =0, and Q,, attains a relative minimum at



i), Moreover, if there exists a positive integer m satisfying Eg{ X;|F;(m)} =

Ey(X|Fy), where F, is the o-field generated by { X, s < t}, then as n — oo,
V(0 — %) 4 N(0,UTRU ),

where

0 - 0 -
U - E{%Xgl(Qo)%Xtt_l(eo)}

The conditional least squares (CLS) estimation approach provides a unified

treatment of estimation problems for widely used classes of nonlinear time series.

1.3 ARCH Process

Models that make use of recent available information will be able to forecast better
than other models that do not take into account this information. This is one of
the reasons why these models benefit particularly from focussing on establishing
the difference between conditional and unconditional moments. Conventional
econometric models do not allow for a conditional variance whose values depend
on the past information, so volatility clustering is not a phenomenon that can be
understood with the aid of these traditional models.

Analysis of financial data has received a considerable amount of attention in
the literature during the past two decades. Several models have been suggested
to capture special features of financial data and most of these models have the
property that the conditional variance depends on the past. One of the well known
and most heavily used examples is the class of ARCH(p) processes, introduced
by Engle (1982) to model the volatility of the UK inflation data. Since then,
ARCH related processes have become perhaps the most popular and extensively

studied financial econometric models (Engle (1995), Tsay (2002), Chandra and



Taniguchi (2003)). An ARCH(p) process is characterized by the equations

P .
o1(0)es, 02(0) =0+ > 0°X2,, t=1,...,m,
X, = i=1 (1.1)

0, t=-p+1,...,0
where {¢;} is a sequence of i.1.d.(0,1) random variables with fourth-order cumulant
kg, 0 = (0°,0,.....0°)T € © C RP™ is an unknown parameter vector satisfying
0°>0,00>0,i=1,...,p, and ¢; is independent of X, s < t.

Since traditional time series models assume a constant one-period forecast
variance, the ARCH model was introduced to overcome this implausible assump-
tion. The process {X;} is serially uncorrelated with zero mean and nonconstant
variance conditional on the past values.

It became clear that ARCH models could efficiently and quite easily represent
the typical empirical findings in financial time series, e.g the conditional het-
eroskedasticity. Financial time series present nonlinear dynamic characteristics
and the ARCH models offer a more adaptive framework for this type of problem.
In particular after the collapse of the Bretton Woods system and the implemen-
tation of flexible exchange rates in the seventies ARCH models are increasingly
used by researchers and practitioners. The financial data is known to have fat
tailed distributions and volatility clustering. It has been shown that realizations
from ARCH type models can exhibit this behavior so that it is of interest to
consider the implications if financial data follow ARCH models. As the name

suggests, the model has the following properties:

e Autoregression- uses previous estimates of volatility to calculate subsequent

future values. Hence volatility values are closely related.

e Heteroskedasticity- the probability distributions of the volatility varies with

the current value.

Existing literature assumes as a minimal requirement of {X;} to be ergodic or

stationary so that the laws of large numbers can be applied. Moreover the generic



assumption for asymptotic normality is that the squared error process has finite
variance. From the view point of statistical theory, ARCH models may be con-
sidered as a specific nonlinear time series models which allow for an exhaustive
study of the underlying dynamics. The literature on the subject is so vast that
we restrict ourselves to directing the reader to fairly comprehensive reviews by
Bollerslev et al. (1992) and Shepard (1996). A detail treatment of ARCH models

at a textbook level is also given by Gouriéroux (1997).

Simulated ARCH Graphs

Let us consider the ARCH(1) process defined by the equations

oi(@)er, o20)=0"+0'X2, for t=1,...,m,
0 for ¢t <0,

Xt:

where {g;} is a sequence of i.i.d. (0,1) r.v., § = (8°,0)7,6° > 0,0 < ' < 1, and
g¢ is independent of X, s < t.

For values 6° = 0.2, 0! = 0;0.8 and n = 100, the graphs are plotted in Figures
1 and 2. It is apparent from these graphs the effect on the appearance of the time
series { X;} of varying the parameter 6.

Figure 1 displays white noise (' = 0). A series with no autocorrelation
looks choppy and patternless to the eye; the value of the observation gives no
information about the value of the next observation. In Figure 2, the series
seems smoother, with observations above or below the mean often appearing in

clusters of modest duration.

10
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1.4 Background and Related Work

One of the first ARCH papers was on ”ARCH with Estimates of the Variance of
UK Inflation” by Engle, published in Econometrica in 1982. Traditional econo-
metric models assume a constant one-period forecast variance. To overcome this
implausible assumption, this new class of stochastic processes called ARCH pro-
cesses was used to estimate the means and variances of the UK inflation data.
While some aspects of this paper have been bypassed by subsequent research, it
remains an excellent introduction.

Since then, variations, extensions, and applications of this model have been
breathtaking and intimidating. Many papers have appeared in many different
places and have been applied to many different settings. The implementation of
this model is relatively simple and from practical a point of view, it’s well known
how to identify, estimate and test this model.

In the estimation of ARCH model, Tjostheim (1986) proposed a conditional
least squares (CLS) estimator, and discussed its asymptotics. As another method,
Godambe (1985) developed the theory of estimating function and introduced
the concept of asymptotically optimal estimating function (see e.g., Chandra
(20014a)).

For an ARCH(p) process, Horvéth et al. (2001) derived the limiting distribu-
tion of the empirical process based on the squared residuals which is considered of
fundamental importance for statistical analysis. Then they showed that, unlike
the residuals of ARMA models, these residuals do not behave in this context like
asymptotically independent random variables, and the asymptotic distribution
involves a term depending on estimators of the volatility parameters of the pro-
cess. Also Lee and Taniguchi (2005) proved the local asymptotic normality for
ARCH(00) models, and discussed the residual empirical process for an ARCH(p)
model with stochastic mean.

Further, Giraitis et al. (2000) discussed a class of ARCH(oo0) models, which

12



includes that of ARCH(p) models as a special case, and established sufficient
conditions for the existence of a stationary solution and gave its explicit repre-
sentation.

For a two-sample Cramér-von Mises statistic in the i.i.d. settings, Anderson
(1962) derived the exact distribution and he compared its limiting distribution
with the exact one, and found that a good approximation to the exact distribution
for moderate sample sizes. He also reported that the accuracy of his approxima-
tion is better than that of the two-sample Kolmogrov-Smirnov statistics studied
by Hodges (1957).

More recently, Chandra and Taniguchi (2003) elucidated the asymptotics of
the rank order statistics for ARCH residual empirical processes. Most of the
techniques employed in the preceding paper have very close counterparts in this

thesis.

1.5 Motivation

As volatility ebbs and flows in financial market and as more and more volatility
and correlation- dependent securities are priced and traded, the demand for good
models, processes and forecasts pushes the research forward.

Thus this study motivates us to consider two independent samples from ARCH(p)
processes {X;} (a target process) and {Y;}. The corresponding squared innova-
tion processes are, say, {Ux .} and {Uy,} with possibly non-Gaussian distributions
I and G. To know the possible differences between these distributions, an ap-
propriate nonparametric technique is employed based on a class of Cramér-von
Mises statistics {T\N} Such statistics serves as a basis for the comparison in terms

of tests of goodness of fit.

13



Chapter 2

Two-sample Cramér-von Mises

statistics and main result

In this chapter we study a class of Cramér-von Mises statistics (see e.g., Durbin
(1973, p.44)) for two-sample problem pertaining to empirical processes based on

the squared residuals from two independent samples of ARCH processes.

2.1 Two Independent ARCH Processes

A class of ARCH(p) processes is characterized by the equations

Px
Ut(gx)gta U?(@X) = 92 + Z Q;thil, t = 1, e, M,
i=1

X, = (2.1)

0, t=-pc+1,...,0.

For this model, we impose the following condtions.

Assumption 1.

(i) {e:} is asequence of i.i.d.(0,1) random variables with fourth-order cumulant

X
l"{t;4.

14



(ii) O = (62,0}, ....,67)T € ©, C RP<™! is an unknown parameter vector satis-

x7 V%

fying 60 >0, 01 > 0,i=1,...,px— 1, 6% > 0.
(iii) 6L+ ---+ 6P < 1 for stationarity (see Milhgj (1985)).
(iv) &; is independent of X, s < t.

v) F(z) is the distribution function of £? and its density f(z) = F'(z) is
¢

continuous on (0, 00).

Another class of ARCH(p) processes, independent of { X, }, is defined similarly
by the equations

Py
oi(0y)&, o7 (0,) =09+ > 0 Y2,, t=1,...,n,
th = i=1
0, t=—p,+1,...,0,

satisfying the following conditions.

Assumption 2.

(i) {&} is a sequence of 1.i.d.(0,1) random variables with fourth-order cumulant

y
K-

(ii) Oy = (6%,0%,...09)" € ©, C R+, 00 > 0,0, >0,i=1,...,p, —1,

y Uy

0y > 0, are unknown parameters.
(i) 6} +--- 4 6y <1 for stationarity.

(iv) & is independent of Y, s < ¢.

(v) G(z) is the distribution function of £ and g(x) = G'(x) is continuous on

(0, 00).
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2.2 Two-Sample Problem and ARCH Estima-
tion
In the following, we are concerned with the two-sample problem of testing
Hy: F(z) = G(x) for all x against Hya: F(z) # G(x) for some z. (2.3)

We first consider the estimation of 6y and 6,. Write (x; = (7 — 1)07 Wy, 1 and
Zei = X2 Wir = (1, Zssy oo Zut—per1)’. Then the autoregressive representa-
tion is given by

Zx,t = G;{Wx,tfl + Cx,t, 1 S t S m,

and analogously for (2.2),
Zyy =0 Wyi1 4Gy, 1<t <,

where Cy,t == (§t2 - 1)9§Wy,t—1 and Zy,t = Y?, Wy,t = (17Zy,t7 .. '7Zy,t—py+1)T

Note that (x and (;; are the martingale difference since
E(Getl Fit) = E(Gal Fiy) = 0,

where F}* = 0{Zx 4, Zxt-1, ...} and F; = 0{Zy 4, Zy4-1, ... }. Suppose that observed
stretches Zy 1, ..., Zym and Zy 1, ..., Zy,, from {Zy,} and {Z,,}, respectively, are
available. Thus from Theorem 1, the corresponding conditional least squares

estimators of 6 and 0, are given by

Ogm = (éﬂym, o ,égfm)T = arg n;in Qum(6y)
and

Oyn = (gg,n’ T egfn)T = arg H;in Qn(Q}’>)
where

Qm(ex) = Z(Zx,t - esz,t—l)z and Qn(ey) = Z(Zy,t - egWy,t—1)2~

t=1 t=1
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Here, we assume that éxym and éyyn are asymptotically consistent and normal with

1/2 1/2

rate m~"/¢ and n~ "/, respectively, i.e.,

ml/QHéX,m - HXH = Op(l) and nl/zuéy,n - ng = Op(1)~ (2.4)

where ||.|| denotes the Euclidean norm. For validity of (2.4), (Tjostheim (1986),
pp-254-256) gave a set of sufficient conditions. Conditions (2.4) are also satisfied
by the pseudo-maximum likelihood and conditional likelihood estimators (see e.g.,
Gouriéroux (1997)).

The corresponding empirical squared residuals are given by

22 v27.-2(p 22 N2 200

g =X /o;(Oxm), 1<t<m and & =Y,"/o;(0y,), 1<t<n, (2.5)
where

02 (Om) =02, Ze W X2 and  o}(0y,) =09, Ze Y2

2.3 Derivation of PAIN(x)

For the testing problem (2.3), we begin by describing our approach in line with
Chernoff and Savage (1958). Put N = m+n and Ay = m/N. For (2.5), the sizes

m and n are assumed to be such that the inequalities
O< X <A <l—X<1

hold for some fixed A\ < Then the combined distribution function is defined

by

1
5

HN(JJ) = )\NF(.I) + (1 — )\N)G(f[}),

where 0 < Hy < 1. In the same way, if F),(z) and G, (z) denote the empirical
distribution functions of {£2} and {€2}, the corresponding empirical distribution

function is

~

Hy(x) = AvE(x) + (1 = Ay)Cn(2). (2.6)
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Bu(x) = m'?(Fy(z) - F(z)) =m /> (I(& <x)— F(z)) and
Bu(z) = n'(Gu(z) = G(x)) =n Y (1§ < 2) — G(x)),

where I(A) is the indicator function of the event A. Then from the result by
Horvéth et al. (2001) (see also Lee and Taniguchi (2005)), we observe that the

quantity Em(x) has the following representation,

B (z) = m'*(F,,(z) — F(z)) + Axzf(z) + lower order terms, (2.7)
where
1 & . ,
Fo(r)==) I(ef<z) and A, = m2(0L . — 07, 2.8
(@) = — ; (e; <) 0;0 (65, )7, (2.8)

with
7o = E(1/c}(0y)) and 7 = BE(X?,;/02(0,)),1 <i < py.

By analogy with (2.7), the corresponding representation of B, (z) is given by

By (x) = n'*(Gn(z) — G(2)) + Ayxg(z) + lower order terms, (2.9)

n

Y UG <) and Ay = Y 020, — 07, (2.10)

1
[ 0<i<py
with
Tyo = BE(1/0(0y)) and 7y, = E(Y;/07(0y)),1 < i < py.
Hence, from (2.7) and (2.9), the expression (2.6) becomes
Hy(z) = Hy(z)+m 2 AvAaf(@)
+n Y2(1 — Ay)Ayzg(x) + lower order terms, (2.11)
where
Hy(x) = AnEFp(x) + (1 — An)Go(x)
with 0 < Hy < 1. The decomposition (2.11) is basic and will be used repeatedly

in the sequel.
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2.4 Cramér-von Mises Statistics {T\N}

For the testing problem (2.3), let us consider a class of Cramér-von Mises statistics

of the form

~

Ty = / (F(z) — Go(2))2dHy (). (2.12)

Note that (2.12) is constructed from the empirical residuals {2} and {£2}. Like-
wise, if we construct it replacing {¢2} and {€2} by {2} and {€2}, respectively,
then it becomes the usual Cramér-von Mises statistic (see e.g., Durbin (1973,
p-47))
18 = [ (Fule) - Gulo) Pabx(z).

This statistic was essentially proposed by Lehmann (1951) and studied by many
researchers (Anderson (1962), Ahmad (1996)) who contributed to its develop-
ment, and numerous theorems have been formulated in many testing problems.
Noting that under Hy : F' = G, the quantity Hy converges to F' almost surely, and

we may conclude under certain regularity conditions that (mn/N)TE converges

/0 1 Z2(t)dt,

where {Z(t); 0 <t <1} is a Gaussian process with

in law to

E(Z(t))=0 and E(Z(s)Z(t)) = min(s,t) —st, 0<s,t<1.

2.5 Asymptotic Theory of {Ty}

The object of this section is to elucidate the asymptotics of (2.12). In what fol-
lows, K will denote a generic constant which does not depend on F'; G, m, n and

N.

We impose the following regularity conditions.
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Assumption 3.
(A1) |(F - G) ()] < K(Hy(z)(1 — Hy(2)))Y? for all z > 0 and K > 0.

(A2) zf(x), xzg(x), xf'(x) and xg'(x) are uniformly bounded continuous, and

integrable functions on (0, 00).

(A3) |xf(z)| < KHy(2)(1 — Hy(x)) and |zg(x)| < KHn(x)(1 — Hy(z)) for all
x> 0and K > 0.

(A.4) There exists ¢ > 0 such that F(z) > c¢{zf(z)} and G(z) > c{zg(x)} for all

x> 0.

Returning to the models {X;} and {Y;}, we now impose a further condition

on 0y and 0y, and the moment of ¢, and &. For this purpose, write

Ot - ORTle} Ol
I 0 0
Ax,t:
0 1 0
and
08 - BTG g
r - 0 0
Ay =
0 1 0
Introduce the notation s

—
A = A BB Ay

(e.g., Hannan (1970, p.518)), and define
Yxs = E(A?f) and Xy, = E(A?f),

where ® denotes the tensor product.
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Assumption 4.
(B.1) &7 and & are nondegenerate random variables.
(B.2) Eley|® < oo and ||Zs]| < 1, E|&]® < 0o and ||Zy 5] < 1,

where || - || is the spectral matrix norm. From this and the result by Chen and An
(1998), it follows that E(Zy,) < oo and E(Z;,) < co. For the case when p, = 1,
and {&;} is Gaussian, we sce that |3y s|| < 1 implies 61 < 1573 ~ 0.4.

In order to state the main result, we observe that the matrices
Us = E(WymiWyip 1) Uy = E(Wy,a Wi y),

and
Ry = (K} + 2)E(0} () Wiy a Wi _y)
and
Ry = (1 + 2)E (0} (0y) Wy 1 Wy, 1)
are positive definite. To justify Ry as an illustration, first observe that it is

evidently nonnegative definite,

o' Rea = (k5 +2)E(a” 0} (0)Wyi1)? >0

for any o = (g, 1, ..., )T € RP*TL. Moreover, if we suppose that Ry is not
positive definite, then there exists a vector (o, o, . . ., aj,) with a;y 7# 0 (jo < px)
such that

Qo + ale,S_l + -+ aonx,s—jo =0 a.e.

Here, note that o?(6) > 0 a.e., because of # > 0. In this case, we can write

ZX,S—jg = _60 - /BIZX,S—l - ﬂjo—lZX,s—jO—i-l;

where Oy = ay/a;,. Hence, substituting this into the last term of o2(fy) in (2.1)

with setting s — jo = t —py reveals that the dimension of our ARCH(py) is reduced
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to be less than py, leading to a contradiction.

Now recalling the definition of Q,,(x) and Q,,(6y), we observe that

m m

0Qm
= —22 — 1)o7 (0) = =2 ¢u(e7) 07 (65),
X t=1

0Qm, S .
39)@‘( = _22 _1Ut xt z:_22¢x5t Ut xt i 1 <1< py,

and

09,
o = —22@—1@ ——zzqsygt a2(0

09, .
89; = _2;(53_1)03( yt i = 2Z¢y gt Jt yt iy 1§Z§py7
where ¢ (u) = u — 1. Write

’Yx,t = (03(9)()7 U?(ex)zx,tfla s 7Ut2(ex)Zx,t7px)T

and

Yyt = (Uf(ey)7 UtQ(ey)Zy,tfla S 70—§<9y)Z§’7t7Py)T'

Then, under certain regularity conditions, it is seen that the corresponding ¢th

element of éx,m and éx,n admits the stochastic expansions,
N . 1
0L —0 = = Vi (el %) 0<i<p, and (213
X,m X m Z x,t(b (St) + Op(m )’ 1P an ( )

O =0y = —Z 50 (E) + o), 0<i<py,
where V/, and V{, are the ith elements of Uy 'y and Uy 'y Write
6X:i = E(‘/xi,t)v 0 S { S Px; 6y,i = E(V;’t), 0 S 1 S pyv

and 7 = (Tx0,---, Txpe)” and 7y = (Ty0,...,Typ, )" (recall (2.8) and (2.10)).
Then, under H, : F # G, we have the following result, whose proof is given in

Chapter 4.
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Theorem 2. Suppose that Assumptions 1 — 4 hold and that, in addition, éx,m
and 9y7n are the conditional least squares estimators of 0x and 0y satisfying (2.4).
Then

NY(Ty — px) fon — N(0,1) as N — o,

where

pn = [(F(x) — G(z))*dHy(x) and 0% = o1y + 05y + 035 + (v # 0 with

oy 8{\y / A(x,y)dG(x)dG(y) + (1 — )\N)l/ B(z,y)dF(x)dF(y)},

<y
a%N = w){Nu;leu;lwx,N, agNzwiNZ/{y_lRyZ/{;lwy,N, and
o = =80 Y md [[ wu@or(e)dG()dG 1)
0<i<px

=) Y wds [ Bl@lplo AP @)AF )

0<’L<p

where

Alz,y) = F(z)(F = G)(z)(1 - F(y))(F - G)(y),
B(z,y) = G(z)(F—G)(z)(1-G)F —G)y),
WxN = —QANl/Q/xf(x)(F—G)(x)dG(x) X Ty,

wyn = —2(1- /\N)_l/2 29(2)(F — G)(2)dF(z) x Ty,

Remark 1. Observe that the terms (see Theorem 2) o3y, 03y and (y depend on
the volatility estimators HAXJn and éy,n- Hence, the asymptotics of {fN} are greatly
different in comparison with the independent, identically distributed or ARMA

settings, this result illuminates some interesting features of ARCH residuals.
Remark 2. For {f W} to be practically feasible, it is necessary to replace o%
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which depends on several unknown parameters and functions by a consistent es-
timator 6%. Observe that 0y, Txi, 0y, Tyj; 0 < i < py, 0 < i < py, and P (z)
and 1y (x) are expected values and can be consistently estimated by the corre-
sponding averages. Note also that U 'R U ! and Uy 1Ryl/{y_ L are the asymptotic
covariance matrices of /m(fxm — 0x) and /n(fy,, — 6,), respectively, and their

estimation is discussed in Gouriéroux (1997).
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Chapter 3

Asymptotic Performance of {Ty}

The limiting distribution of {fN} given in the preceding chapter provides a use-
ful guide to the reliability of asymptotic relative efficiency and ARCH wvolatility
effect. Thus we may proceed to illustrate these aspects of {fN} numerically for
some ARCH residual distributions. Moreover, a measure of robustness for {fN}
1s introduced by means of Hampel’s influence function. Then this quantitative
information based on such ARCH residual distributions is illustrated by simula-
tions. The same study of {fN} 15 also demonstrated using the daily stock returns
of AMOCO and IBM companies of New York Stock Exchange from February 2,
1984, to December 31, 1991.

3.1 Asymptotic Relative Efficiency

In this section, we consider the assessment of asymptotic relative efficiency of
the statistics TJ{? and fN for some residual distributions in the ii.d. and in
our ARCH residual settings, respectively. The results help to highlight some

interesting features of Ty in comparison with TE.
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For simplicity, let us consider the ARCH(1) model

oi(0x)er, 0F(0x) =602 +0LX2, for t=1,...,m,
0 for ¢t <0,

Xt:

where 0, = (02,017, 0% >0, 0 < 0! < 1, {&} is a sequence of i.i.d.(0,1) random

variables with fourth-order cumulant %, and ¢, is independent of X, s < ¢.

Another ARCH(1) model, independent of {X,}, is given by

01(0,)&, o (0y) = H(y) + 9}1,Yt271 for t=1,...,n,
0 for ¢t <0,

Y, =

where 6, = (69,605)", 6) > 0,0 <6} <1, {&} is a sequence of 1.i.d.(0,1) random
variables with fourth-order cumulant %, and & is independent of Y, s < t.
Recall that F(z) and G(z) are the distribution functions of €7 and &2, re-
spectively. The hypothesis of interest in the two-sample problem is that Hy :
F(z) = G(x) for all > 0. If one imposes conditions on the form of the common
distribution together with the assumption that a difference between the distri-
butions exist, it is only between means or between variances. The proposed test
procedure may be sensitive to violations of those assumptions which are inherent
in the construction of the test. In practice, other assumptions are often made
about the form of the underlying distributions. One common assumption is called
the location model.
Let us now consider the location problem in the case of G(z) = F(z + ) for
some parameter 6. Henceforth, it is assumed that F' is arbitrary and has finite
variance 0%. The two-sample testing problem for location can be described as

follows;

Hy:0=0 against Hy:0>0.

In light of Theorem 2, we can readily see under Hy : § = 0 that the distributions
F(z) and G(x) coincide for all z > 0. Thus, it is instructive to apply this theorem

under Hy : 6 > 0 since F(x) < G(z) for all x > 0. In such a case, we may take,

26



for example, Hy : @ = 1. Assuming that m = n = N/2, the mean becomes

pr(f) = % /(F(J;) — F(x +0))%d[F(x) + F(z + 0)]

and the variance under Hu : 0 = 1 is 0% = 03(F) + 03(F) 4+ 03(F) +~v(F), where

ol(F) = 16//A*(x,y)dxdy+ 16//3*(x,y)dxdy,
<y <y

A = se [ xf(w)f(:vﬂ)[F(x)—F(x+1)]da:>2,

) = so [ Zf(Z)f(erl){F(Z)—F(Z+1)]d2>2,

) = 10 [ | ["w st it pasay
16k, // [/j(u— 1) (u+ 1)du} o (@, 2)dedz

with

A(z.y) = fla+1)f(y+1)F(z)
x[F(z) = F(z + ][l = FW)][F(y) — F(y + 1],
B'(z,y) = [(@)f(y)F(z+1)
x[F(z) = F(z + D]l = F(y + D][F(y) — F(y + 1)],
Cy = FHUITRU T, Cy =7 URUF,,
ki = Twobxo+ Txalx1, ko = Ty.o0y0 + Ty10y1,
pi(z.y) = fle+D)[F(z) - Flz+ Dyfy)f(y+ DF) - Fly+ 1),

py(e,z) = f@)[F(x) = Flz+1)]zf(2)f(z + 1)[F(2) - F(z + 1)].

where 7x = (70, 7x1)” and 7, = (730, 7y1)".

To begin with, let us state a set of Pitman regularity conditions which makes
the computation of efficiency for two test sequences quite easy in the case of
finite sample sizes. Suppose that fN is a test statistic based on the first N
observations for testing Hy : 0 = 6 against Hy : 0 > 6, with critical region

fN > An,o. Further, suppose
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(i) impy_oo Py, (T\N > Av.a) = @, where 0 < o < 1 is a given level;

(ii) there exist functions pn () and oy (6) such that Nl/Q(fN—ﬂN(Q))/O’N<9) <

N(0,1)

uniformly in 0 € [0y, 0y + €], € > 0;
(iii) iy (6o) > O;

(iv) for a sequence {0y = 6y + N~1/25, § > 0},

i [y (On) /i (00)] = 1, lim [on(On)/on(6o)] = 1;

N—o0

(v) limy oo [ty (00)/on (00)] = ¢ > 0.

For a € (0,1), write Ao = ®}(1 — a), where ®(z) = [* _(27) /2e"*/2dt. Then
the asymptotic power is given by 1 — ®(\, — dc). The quantity ¢ defined by (v)
is called the efficacy of fN. It is known that the asymptotic power, in addition
to providing a measure of performance, also serves as a basis for the comparison
of different tests.

Let T = {T](Vl)} and T?) = {T](VQ)} be test sequences with efficacies ¢; and
¢y, respectively. Then the asymptotic relative efficiency (ARE) of 7™ relative to
T@ is given by e(TM, T?) = ¢2/c2.

In order to evaluate the ARE of T? = TP(F) and Ty = Ty (F) , it is necessary
to specify F'. For this purpose, let us suppose that {¢,} is a sequence of i.i.d.(0,1)
random variables with continuous symmetric distribution F* and density f*.

Then

Flz) = P& <) = EF*(ﬁ) —ho i 2 (3.1)

We shall now compute (3.1) in the following particular choices of F™*.
(i) F* (Normal):

Fi(z) = / (2m) Ve Rt fi(x) = (27) Ve zeR.

—00
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In this case,
Fu(z) = 2R3 (VE) =1, fula) = ——e~"2, 2> 0.
(ii) F* (Double exponential):
Fp(z) = /w %eiltldt =1- %e*”, foe(z) = 1e*m, r e R.

—0oQ

In this case,

1
Fpg(z) =1—e V%, fop(z) = ——=e V=, 2 >0.

(iii) F* (Logistic):

1 e "
Fr _—, Y = —, e R.
In this case,
1—e Ve e~ Ve
Fi = —\ = — > 0.
]L(I) 1 + 6_\/‘% f]L(x) \/5(1 + 6_\/5)2 x

Recalling the definition of up(0), 0% and o?(F) and assuming that up(0) is
continuously differentiable with respect to 6 at H4 : § = 1 under the integral

sign, we have
, 1
pp(l) = (F(2) = F(z +1))*f'(x + 1)da
/fm+1 ) + fla+1))(F(z) — F(a + 1))dz
so that the ARE of T and fN between distributions F; and F5 is
e(Fy, Fy) = C%Q/C%vl, (3.2)

where cp = p/p(1)/o(F), with o(F) = 01(F) and op. In an attempt to evaluate
(3.2), we need to approximate values of 0% = 0%(C, Cy, ki, k) for various m =
n = N/2 and parameters based on F' = Fy, Fpg and Fp. Set §° = 0% = 03 and
o' =0l = 9}1,. Then, for #° = 1,0' = 0.1,0.3, and m = n = N/2 = 100, 500, we
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generate realizations of X; and Y;. Note that the above choice of parameter values
satisfies necessary conditions. On the basis of conditional least squares estimators
é% and 677171 of 6° and 6', respectively, the quantities Cy, Cy, k1 and ks are estimated
by the corresponding averages. In the actual computation of ;/x(1),c%(F) and
0%, we evaluate the integrals by a rectangular numerical integration with n terms.

All the estimation results in the tables below are based on 100 replications. Table

1 provides these results.

Table 1. Approximate values of e(,-) for T2 = T2 (F) and
fN = fN(F) based on F = F,

Tn(F)

ARE TP(F) m=n=100,=1 m=n=500,6 =1

6! = 0.1 ' =0.3 6! =0.1 ' =0.3

e(Fy, Fpe) 1.3331 1.3067 1.3048 1.3062 1.3049
e(Fy, FL)  0.7105 0.7237 0.7248 0.7240 0.7248

e(Fpg, F1)  0.5330 0.5538 0.5555 0.5543 0.5554

A closer examination of the ARE values in Table 1 reveals some distinctive char-
acteristics. It is fairly clear that the values in Table 1 are stable with respect to
the choice of parameters and distributions, and m = n. We also observe that the
corresponding values for T2 (F) differ from those for T\N(F ). These differences
are due to the effect of the ARCH volatility estimators é?n and é}n In addition,
it is seen that the case of F' = Fy, is more efficient than the other cases for all
chosen values of m = n and the parameters. However, the efficiency for F' = F,
decreases as ' or m = n increases. We also observe that fN(F) for F' = Fpg is
a strong competitor to that for ' = Fj when 6 becomes small. Another point
worth noting is that 7% (F) and T\N(F) for F' = Fpg outperform that for F' = Fy
in all cases. A striking feature of this study agrees that this testing problem is

best in the case of heavy-tailed ARCH residual distributions.
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3.2 ARCH Volatility Effect

In this section, we study a distinction of Ty = Ty (F) and T2 = T2(F) in terms
of their levels of test for two-sample location problem under H,4 : # = 1 based on
F = Fy, Fpg and Fp.

Suppose that NY2(TE — pp) /oy (F) < N(0,1) holds. Then the test

NYATY — pr)/o1(F) 2 Aa

has nominal asymptotic level &« as N — oco. We assume « to be less than 0.5 so

that A, > 0. For this A,, let
an = P{NY*(Ty — pr)/or > Ao}

Then & = limy_ Gy exists and is given by & = 1 — ®(A\,dr), where dp =
01(F)/op. Since op > o1(F), we have & > a.

To distinguish how much the actual & varies from the nominal «, we use the
level v = 0.05 for which Ag5 = 1.645. Using the same values of op and o, (F)
for I' = Fy, Fpr and Fp, we provide the results in Table 2.

Table 2. Actual @ =1 — ®(\,0p), 0 = 01(F)/op, F = F,

when nominal level o = 0.05 for which A5 = 1.645

m=mn=100,0° =1 m=mn=>500,0° =1

Distribution
=01 0'=03 =01 0'=03

Om, 0.9804 0.9790 0.9799 0.9790
R, 0.0534 0.0536 0.0535 0.0537
0 e 0.9902 0.9896 0.9900 0.9896
Apyy 0.0517 0.0518 0.0517 0.0518
Op, 0.9714 0.9694 0.9694 0.9714
ap, 0.0550 0.0554 0.0554 0.0554
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Table 2 shows that the values of &, are differ from the nominal o = 0.05 with
respect to the choice of parameters and distributions, and m = n. It is also seen
that these values tend to increase slightly as #' or m = n increases. Such an
increase is due to the asymptotics of the ARCH volatility estimators é?n and é}n
In addition, it shows the effect of skewness on the level. As is typically the case
when F' = F, is skewed to the right, &, > « for the lower-tail rejection region.
It should be pointed out that, in general, the closeness of &, to a depends not
only on the parameters but also on other aspects of F' = F,. We can therefore
say that the asymptotic level of fN is fairly different from that of 7% because of
the ARCH specification effect.

3.3 Robustness Measures

Hampel’s influence function IFH is a heuristic tool which provides rich quan-
titative robustness information. It measures the sensitivity of a statistic T' to
infinitesimal deviations from an underlying distribution F'. In the following, we
introduce some measures which indicate a robustness of T\N given by (2.12).

It was shown in the proof of Theorem 2 (see (4.1)) that
T — pixy = Un(Fi, Go) + Vin O F, G) + Vo By F, G) + 0,(N7V2),

where

Un(F,Gy) = 2{/s(x)d(Gn - G)(x) — /s*(m)d(Fm — F)(x)},

Vi (b F, G) = 257 (B — ) / £ (2)(F — G)(x)dG(x)
and

Van (Oy.; F, G) = =277 (By,,, — O) / 2g(z)(F — G)(x)dF (z).
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Let us first study a robustness of Uy(F,,,G,). To simplify the presentation,
assume that m = n = N/2. Then

Un(Fp, G) = 2{/5(:p)d(Gm — () — /s*(x)d(Fm - F)(x)},

where

x

@)= [((F-@Wdry) wd @)= [ #-6)ucw)

xo o
with 2y > 0 determined somewhat arbitrarily. As a measure of its robustness, we

can introduce the following influence function:

IFH(F,G) = lim UnA(L = W)F + hda, (L= )G + hoy}
AN0 h

where h € (0,1) and ¢, is the probability distribution with point-mass one at ¢.

Thus, we obtain

IFH(F,G) = 2{s(b) — s*(a) + /s*(x)dF(x) — /s(x)dG(x)},

~

Next, we discuss a robust property of Vin(0xm,; F,G). Let us now consider

é&m. Write Sy, = (X?2,..., X7 )T and Ws, , = (1,ST,)", and let S)(:t) be the

t—pxt1 »Pxt

first component of Sy;. Then we can write ésmm = ﬁgx ng, where
7. Zizm:S(l)W and U, :lzm:W we
Sx m pas X,t Sx,t—1 Sx m o Sx,t—1 Sy, t—1°

Since 7, and ﬁgx are sample versions of
Y5, = B(SUWs,41) and Us, = E(Ws 1, Wi, y),

respectively, the corresponding functional of ésxym is Ts, = Ug, '~s.. Let us now

consider the following contaminated process
S)il,t = (1 — h)SX,t + th,t = Sx,t + thi’ (Say).

For S!' = {S],}, we can introduce an influence function
;o Tsp =T,
Ty = lim ———.

* h\0
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Noting the differential formula for matrix dZ~! = —Z~1(dZ)Z~", we obtain

d -1 -1 Ty /—1 0 T
el - _ Ay +ADUTNL A =FE Ws 1]
thSQ o qu( + X) Sy Lx,t—l Sx,t—1
Also,
d (1) wm( 0 /
%’Ysjg = E(Lx,t Wst1) + E Sx,t I = Vs (say),
h=0 x,t—1

where L,((lt) is the first component of Ly ;. Hence,

Ts, =Us, (75, — (Dx + AL)Ts,)

and similarly for Von (0y.,; F, G),

Ty, = Us ! (vs, — (Ay + A7)Ts,).

The quantities I FH(F,G), T and T, will facilitate the fundamental description

of sensitiveness or insensitiveness of Th.

Returning to the setup of Section 3.1, we describe the quantitative information

A~ ~

for Un(Fn, Gim)s Vin(Oxm; F, G) and Vo (0y 3 F, G) by computing [ FH(F,G) =
I(F), Vin(Tg,, F) and Von (T, F), respectively. Using the same realizations of
X; and Y; for m = n = N/2 = 100,500 and (6°,60') = (1,0.1),(1,0.3), Tables 3

and 4 provide these results for F' = Fy, Fpg and Fp.

Table 3. Approximate values of I(F), Vin(Ty_, F) and Von (T, , F)
for Ty = T (F) based on various F = F, and m = n = 100, ¢° = 1

Vin(Ts,, F Von (Tl | F
Distribution  I(F) (T, F) v (T, F)

' =01 6'=0.3 ' =01 6'=0.3

In 0.0350  0.0647  0.0193 0.0187  0.0096
Ior 0.0224  0.0364  0.0108 0.0105  0.0054
1, 0.0249  0.0517  0.0154 0.0149  0.0077
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Table 4. Approximate values of I(F), Vin(T§,, F) and Von (T , F)
for Ty = fN(F) based on various F = F, and m = n = 500, §° =1

Vin(Ts,, F) Van (T, , F)

Distribution — I(F')
' =01 60'=03 0'=01 6'=03

Fy 0.0350  0.0390  0.0173 0.0263  0.0151
For 0.0224  0.0219  0.0098 0.0148  0.0085
I, 0.0249  0.0311 0.0138 0.0210  0.0121

An examination of the values in Tables 3 and 4 shows some interesting features
about the sensitivity of Ty = fN(F) for F' = Fy. First it is apparent that
the values are stable with respect to the choice of parameters, distributions and
m =n = N/2. Tt is also interesting to note that when @' increases, the values of
Vin(-, ) and Von(+, +) tend to decrease for each m = n. This behavior depends not
only on the choice of parameters but also on other aspects of F,. We summarize
by saying that fN is robust in terms of goodness of fit for such heavy-tail ARCH

residual distributions.

3.4 Real Data Analysis

To assess the usefulness of the asymptotic result obtained in chapter 2, the pro-
posed two-sample testing problem for location is applied to real data sets. The
data sets of interest are the daily stock return data points (m = n = 2000) of
AMOCO and IBM companies of New York Stock Exchange from February 2,
1984, to December 31, 1991.

For the ARCH residual distributions F = Fy, Fpg and Fp,, the asymptotic
relative efficiency, the ARCH volatility effect and the measure of robustness of
Ty = fN(F ) are demonstrated numerically in Tables 5 — 7, respectively. Note

that the values in the tables are stable with respect to the choice of the distribu-
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tions. These results provide enough evidence in support of the simulation results.
We summarize by saying that the two-sample testing problem for location works

well in the case of heavy-tailed ARCH residual distributions.

Table 5. Estimated values of e(, -)

based on various F = F,.

e(Fy, For) e(Fn, FL) e(Fpg, F1)

1.2320 0.7646 0.6206

Table 6. Actual @ =1 — ®(\,0F), 0p = 01(F)/op, F = F,

when nominal level o = 0.05 for which A\ g5 = 1.645

Distribution  dp, ap,
Iy 0.9306 0.0629
Fog 0.9680 0.0557
I, 0.8970 0.0700

Table 7. Estimated values of Viy(Tg , F)
and Von (T, , F) based on various F' = F.

Distribution  Vin(Ts, F) Von(Tg . F)

2N -0.0025 0.0023
For -0.0014 0.0013
1 -0.0020 0.0018
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Chapter 4

Proof

In this chapter we give the proof of Theorem 2.

Write £, = (Ey — F)+ F, G, = (G, —G)+ G and dHy = d(Hy — Hy) + dHy.

Then the statistics (2.12) after a little simplification becomes
Ty = pix + Bin + Boy + Ciy + Con + G,
where
v = [(F - GFdHy()
Biy = /(F — G)%d(Hy — Hy)(2),

A~

By — 2/(F—G)((Fm—F)—(GH—G))dHN(m),

A

Civ = [((F=F) = (G- G)Palix(o)

Cov = [((Fu=F) = (G = )Py~ Hy)(a),

Con = 2/(F C O (Ey — F) — (G — G))d( By — Hy)(x).
To establish the proof of this theorem, we proceed to show that:

(i) the term gy is finite,
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(ii) Bin + Ban has a limiting Gaussian distribution, and
(iii) the C, terms are uniformly of higher order.

Let us first show the statement (i). From (A.1), it is seen that

‘/(F — G)2dHy(z)|< K/Ol Hy(1 — Hy)dHy(z) < K < oo,

Next we show the statement (ii). From (2.11) and integrating By by parts,

we observe that
Buv = =2 [(F=G)(fly - Hy)d(F - G)
— 2w [(F=6)(Fn~ F)F - G)(a)
+(1 =) /(F - G)(G, — G)d(F + G)(x)
s VA, [ o (@)(F = G)@)(F - G))

0 (1= M)Ay [ ag(o)(F = G)w)(F - G)a))

+ lower order terms.
Then, from (2.7), (2.9) and (2.11), we obtain
N'Y2(Biy + Boy) = 2N1/2{ / s(x)d(G, — G)(x)
- [ @tk - F)
A [ af(2)(F - G)a)dG()
12, / 2g(2)(F — G)(z)dF(z)}

+ lower order terms

= ay + by + ¢y + dy + lower order terms, (say), (4.1)
where
@) = [(F-Guire) ad s@ - [ (F-6wicw
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with g > 0 determined somewhat arbitrarily.
To compute the variance of (4.1), we shall first find a bound on the moments

of s(z) and s*(z). Using (A.1) and the fact that dHy > A\odF’, we see that
E{|s(z)[}** < K/l(HN(l — Hy))"3dHy(z) < K < oo,
0
and similarly, we can establish that
E{|s*(x)[}*" <00, 0<d<1.

We shall now find the variance of (4.1). Noting that ay and by are mutually
independent random variables, and using the result by Chernoff and Savage (1958,
p.976), we obtain

oy = Var(ay + by). (4.2)

Similarly, we can compute the same for ¢y and dy by first observing Theorem 1
that
Var(m'? (s, — 05)) = U RUS !

and

Var(n'?(fy,, — 6y)) = U "RU; .

Thus, recalling (2.8), (2.10) and (2.11), we get
o3y = Var(cy) and o3y = Var(dy). (4.3)

We next compute the covariance terms. Since {X,;} and {Y;} are independent,

we have only to evaluate
KlN = 2E(bNCN) and KQN = 2E(CLNdN).

From (3.1), we obtain

Kiy = =8\ [[ B{m (5, = P)@) A psla, )G G )
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for which, it is necessary to find E{-}. Using the result by Horvéth et al. (2001),
it follows from (2.8) and (2.13) that

BY2(Fn — F)(@)Ad) = (@) 3 Tuidi

0<i<px

where 1 (z) is defined in Theorem 2. Thus,

Kiv ==\ Y nds ([ u@pslap)dGlo)iGly

0<i<px

and similarly

Kox =801 - )" S 7y / Uy ()py (. 2)dF (2)dF (z).

0<i<py

Adding Ky and Ksy produces (y defined in Theorem 2.

Hence, using the term (y, (4.2), (4.3), Theorem 1 and the central limit theo-

rems given by Horvath et al. (2001), we may conclude that

N1/2(B1N+BQN)/ON i>./\/’(0,1) as N — oo.

We finally show the statement (iii). For this, we need the following elementary

results (see Chernoff and Savage (1958, p.986)).

(E.1)
(E.2)
(E.3)
(E.4)
(E.5)

(E.6)

dHy > \ydF > \dF.
dHy > (1 — Ay)dG > M\dG.
1—F<(1—Hy)/Av < (1—Hy)/X.
1-G<(1—Hy)/(1=Ay) < (1= Hy)/o.
F(1—F)< Hy(1 — Hy)/N% < Hy(1 — Hy)/X2.

G(1—G) < Hy(1— Hy)/A2.

Let (an, Oy) be the interval Sy, where

SN€ = {l" : HN(l — HN) > 776)\0]\/'71}.
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Then 7, can be chosen independently of F', GG, and Ay so that
Ple2e Sy, t=1,....m, &€Sy,t=1,....,n]>1—¢

Let us first evaluate the random variable Cjy. Using (2.7) and (2.9), we

obtain

Ciw = [((F = F) = (Go - O)Pdlx(2)
s A, [ f(@)(Fn ~ )@y ()
~2m 4, [ af(@)(Gy - 6)(a)dHx (o)
_on-124, / 29(2)(Fy — F)(x)dHy(z)
20 Y2 A, / 2g(2)(G — G)(x)dHy(z)
m A2 / 222 (2)dH oy (z)
+nlA2 / 22 (z)dHy ()

—2m PP AL A, / (zf(x))(zg(z))dHn(x)
+ lower order terms

8
= Z Chin + lower order terms, (say).
i=1

We first deal with Ci1y. In what follows, we mean that all mathematical relations,
e.g., <, = etc. hold with probability 1 —e. Since {X;} and {Y;} are independent,
it follows from (E.5), (E.6) and (4.4) that

1 1 1
K

S — HN(l—HN)dHN(.’L’)
N S,

= SOHN(Bw)(1— Hy ()] = o(N 7). (45)
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Therefore, by the dominated convergence theorem, we have Cyiny = 0,(N -1/ 2).

Next we turn to Ciapy, for which, it suffices to show

/SN{/: yf(y)dHN(y)}d(Fm — F)(z) = 0,(1). (4.6)

In view of (A.1)-(A.3) and (4.4), we see that (4.6) is dominated by

/SNE {/x: ny(y)ldHN(y)}ld(Fm — F)(2)|

<k { I HN<y><1—HN<y>>dHN<y>}\d<Fm—F><:c>|
< / Ol(Hy (2)(1 — Hy(x)))|d(Fyy — F)(2)

SN€
= w2 [ oW dm! A, — F)(a)

= 0y(1) (e.g., Puri and Sen (1993), Theorem 2.11.6), (4.7)

which, together with the fact (m=/2|A,|) = O,(m~1/?), implies 1oy = 0,(N~1/2).
The proof for Cizy = Cuuy = Cisy = op(N_l/Q) is analogous to (4.7). Now we
consider Cgy. Following the arguments of (4.5) and (4.7), it is seen that

|Cien| < m_llAX\Z/ |z f(2)|*dHy (z)
Sn.

< 0,(m™) / (Hy(1 — Hy)?dHy(z) = 0,(N"Y),  (48)

hence, we have Cigy = op(Nfl/Q). To complete the assertion for C7y, we can

similarly show Ci7y = Cigy = 0,( N~1/2). Consequently, we have
Cin = 0,(N7?).
Next we deal with Cyy. Recalling (2.12), we obtain
Cov = [((Fn=F) = (G~ G)Pd(Hy — Hy)()
sV A [ (B = F) = (G = G)Pd(af (@)
4071, [(F = F) = (G = G)dlag(a)
+ lower order terms

= Cyn + Oy + Cozny + lower order terms, (say),
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where (Hy — Hy)(x) = Av(Fo — F)(x) + (1 = An)(G,, — G)(x). Let us first

evaluate Cyy. By analogy with the first C' term, we have

Cax = [((Fu=F) = (G = G)d(H ~ Hy)(a)
w2 AL [ af(@) (B~ F)a)d(Hy — Hy)(a)
~2m AL [ af(@)(Go ~ G) @)y~ Hy) (o)
o2, [ ag(a) (B~ P ~ Hy)o)
w22, [ ag(a)(Go — G)a)d( My — Hy)(a)
s A2 [ )~ Hy) ()
+n AL / ?g*(x)dHy — Hy)(x)

2 o0 A, [ (o f @) wgla))d(H — Ha)(a)
+ lower order terms

8
= Z Co1iv + lower order terms, (say).
i=1

Let us first consider Cy1qy. Since {X;} and {Y;} are independent, we have only

to evaluate
E(|Conn|) = E{/\N/S (F,, — F)*d(F,, — F)(x)
+(1 = Ay) /SNS(GTL - G)d(G, — G)(x)}

From the result by Chernoff and Savage (1958, p.990) and (4.5), it follows that

Blcun) = 2|5 [ 0= P-20r@)
*z —1AN/S (1—a)(1 —2G)dG(x)]

K 1

< N2 SNEdHN(J:)zo(N ),
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which implies Co1nx = 0,(N ~1/2) Next we consider Cyioy, which on integrating

by parts gives
Coran = m ™ PAL=ANCiion +2(1 = Av)Caton )

where

Chow = / (Fy — F)d(xf(x),

SN,

Citay = / (@) (F — F)(@)d(Gy — G)(z).
SN

Let us first deal with C3;,5. From (A.2), (A.4) and (4.5), it follows that

BCinl) < s [ O E@
< % Hy(1— Hy)dHy(x) = o(N7H). (4.9)

Next we turn to Cs5,y. Since {X;} and {Y;} are independent, we have

E(C;BN) - E[E(C;TQNM%» ce 752)] =0, KO;TQN) |§17 ) } C;T;Nv

Ciitv = || sl @IWP@)( - PG, - G)a)(Go = G,

:r,yESN6
<y

E(C5D) € — // 2y f(2) F)| F(2)(1 — F(y))dG(x)dG(y)

mn

z,ysSNE
<y

% / ey f(x) £ (y)| Hx (2)(1 — Hy(y))dHy (z)dHy (y)

% // 2(1 — 2)y(1 — y)*dedy = o(N71). (4.10)

O<z<y<l

IN

IN

Thus, using the dominated convergence theorem, (m~'/2|A,|) = O,(m~'/?), (4.9)
and (4.10), we have Co1on = 0,(N~!). The proof for Co1z3y = Coran = Corsy =

op(N_l) can be handled similar to Cs12x. Now we turn to evaluate Cy16y, where
Coien = milAi{)‘NC’;lGN + (1 - /\N>CSTGN} (4~11)
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with
Chow = / @) B~ F)e)

Ciion = /S @) dG = o)

Following the arguments of (4.7), we can easily show Cjqn = Chion = 0p(1),
which, together with (m ™A, [|*) = O,(m™"), implies Co16x = 0,(N~1). Similarly,
we can prove Coizy = Corgn = 0,( N71). Hence, we have Coin = 0,(N71/2).

Next we consider Choy. In the same way as for Ciy, we obtain
Cax = m Ay [ (B = F) = (G~ G)Pilaf (@)

2 Al [ af(@)(Fn — F)@d(ef (@)
~2m vl [ f(@)(Gy — 6)a)dla (@)
Com V2V N A, / 2g(2)(Fp — F)(2)d(zf(z))
+2m =22 A Ny AL A, / zg(x)(Gy — G)(x)d(zf(x))
s Al [ 2 e ()
bV g A [ g ) @)

—2m~ AN ARA, / (@ f(2))(zg(x))d(x f(x))

+ lower order terms

8
= Z Cain + lower order terms, (say).
i=1

Let us first consider Cooyy = m™ 2 Ay A Ciyy n, Where

Conn = [((Fo = F) = (G = G)Pdlaf @)

Recalling (A.2), (A.4) and (4.7), we obtain

Bl < o5 [ [F52 + 52 arw
< B me = Hy)dHy () = o(N7Y).

N Js,.,
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Therefore, by the dominated convergence theorem and (m /2| A,|) = O,(m~/2),
we have Coon = 0,(N7!). Next we evaluate Cagan, which on integrating by parts

produces Cogon = —m AN A2Chy,y, Where
Cian = | (@f@)Pd(Fy = F)(@) (4.12)

Using the result of (4.11), it follows that C3,,n = 0,(1), which implies Coon =
0,(N71). Similarly we can prove Casy = 0,(N™!). We now turn to evaluate

Caoan. Now using (A.2)-(A.4) and (4.7), it is easy to show

/SNG {/Z yg(y)d(yf(y))}d(Fm — F)(z) = 0,(1),

Zo

which, combined with (m='2n=12| A||Ay|) = O,(m~"/?n=1/2), entails Coouy =
0,(N71). Similarly, we can prove Casy = 0,(N™'). Next, we consider Cagy. In

view of (A.2)-(A.4) and (4.8), we see that

(Cosonr| < Opm™2) / (Hy (1 — Hy))*dF(x) = op(N"1).

Thus, Casn = op(N_l/Q). Similarly, we can prove Cosry = Cosgy = op(N_l/Q).
Hence, we have Coon = op(N_l/Q). The proof of Cosy = op(N_l/Q) follows

precisely on the same lines as that of Cyn. Consequently, we have

CQN = OP(N_1/2).
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Finally we evaluate Csy. By analogy with the second C term, we obtain
Cow = 2 / (F = G)(Fyy — F)d(Hy — Hy)(x)

-2 [(F= 66y~ Gl — Hy)(w)
s AL [ af(@)(F - 6) @)l - Hy)@)
—on 2 A, / rg(2)(F — G)(z)d(Hy — Hy)(z)
+2m ™2\ y Ay / (F — G)(F,, — F)d(zf(z))
2 A [(F = 6)(G, ~ Gifaf (@)
Lon V21— Aw) A, / (F = G)(Fyy — F)d(zg(x))
—2n12(1 = Ay) Ay /(F — G)(Gp — G)d(xg(x))
w2 Al [ f(@)(F - G)(w)ilaf (o)
2 (1= A [ 2g(@) (F = G)(@d(wg(a)
—om V2 V2 Ay A, / 2g(2)(F — G)(z)d(z f(z))

+2m V2 Y2 (1 — )\N)AXAy/xf(:L’)(F — GQ)(z)d(xg(x))

+ lower order terms
12

= Z C3in + lower order terms, (say).
i=1

Let us first consider C3;y, which on integrating by parts yields
Caiv = An(Coy — C3iy) +2(1 = An) G5y,
where

Ciy = / (Fy — F)dG(x),
Ciiy = / (Fyy — F)2dF(),
oxy = /S (F - G)(Fyy — F)(Gy — G) ().
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Recalling (4.10) and (4.11), we can easily show Cs;y = 0,(N~Y2), and analo-

gously Cson = op(N_l/Z). Next we turn to evaluate
G = 2m 2 A A Gl + (1 — Aw)Ciin .
where
i = /3 @) - G)@(F ~ F)).
Cix = [ @) - O) @G~ G

Using (A.1)-(A.3) and (4.12), we can show C3; = Ci5y = 0,(1), which, combined
with (m~Y2|A,]) = O,(m~?), implies Cs3x = 0,(N~/2). The proof for Cayn =
0,(N71/%) can be handled similarly. Now we turn to Cssy, for which, it suffices

to show

/sNﬁ {/(F B G)(y>d(yf(y))}d(Fm ~ F)() = 0,(1). (4.13)

Zo

In view of (A.1), (A.2), (A.4) and (4.7), it is seen that (4.13) is dominated by

i O[(Hy(x)(1 — Hy(x)))**)|d(Fp — F)(2)]

= m i O(N*2)|d(m'?(Fy, — F)(2))] = 0,(1).

Therefore, Cssn = 0,(N~Y/2). Similarly, we can show Cssy = Cary = Cagy =

0,(N~1/2). Now consider C3gy. From (A.1)-(A.4) and (4.8), we obtain

Coon| < Opm™) / (Hy (1 — Hy))2dF (z) = 0,(N7Y),

SN

hence, Csgn = op(N_l/Q). Similarly we can show Csiony = Cs1iy = Cz1oy =

0,(N~/2). Consequently, we have
Csy = Op(Nil/Q).

This completes the proof of the theorem. [ |
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Chapter 5

Conclusion

This chapter provides the concluding remarks to the thesis. It also gives a brief
overview of the related research that can be carried out in future by reformulating
the results obtained in this thesis. Moreover it also discusses some implication

and application aspects of the results.

In this thesis, we have derived the limiting Gaussian distribution of the two-
sample Cramér-von Mises Statistics {fN} for ARCH residual empirical processes
based on the techniques of Chernoff and Savage (1958) and Horvath et al. (2001).
More concretely, we concluded that NV2(Ty — pux)/on —— N(0,1) as N — oo,
that is fN is normally distributed with mean py and variance 0]2\,.

Under the null hypothesis Hy : F' = G, we observe 0% = 0, which indicates
that we do not have a normal limit. However, N fN has a non-normal limit and
this is the analogue result given by Anderson (1962).

It may be noted that the above results can easily be reformulated to the case
of the one-sample as well as ¢(> 2)-sample problem and that the same result
is true for GARCH processes as well, using the result by Berkes and Harvath
(2003).
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Finally the results obtained are widely used to study the asymptotic power
and power efficiency of a class of two-sample tests. Thus the study motivates us
to consider two independent samples from ARCH(p) processes as stated in section
1.5. For instance, let {X,;} be a data set for the stock market in Australia and
let {Y;} be another data set for the stock market in New Zealand with possibly
non-Gaussian distributions " and G. In order to highlight the possible differences
between these two sets of data, a nonparametric technique is used based on the
two-sample Cramér-von Mises statistics. These statistics serve as a basis for the

comparison in terms of tests of goodness of fit.
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