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Notations

R : set of all real numbers

T : transpose

Rm : set of all real m × 1 vectors

a.e. : almost everywhere

a.s. : almost surely

i.i.d. : independent and identically distributed

r.v. : random variable

d.f. : distribution function

op(1) : convergence in probability to 0

Op(1) : bounded in probability

CLS : conditional least squares

min : minimum, minimize

sup : supremum

e : exponential

∈ : belongs to
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⊂ : is a set of

Θ : parameter space

d : differential

‖a‖ : norm of a vector a

|a| : absolute value of a scalar a

I(A) : indicator function of an event A

φ′(ν) : partial derivative of φ(ν)

φ′′(ν) : second partial derivative of φ(ν)

F : σ-field

E(X) : expectation of a r.v. X

E(X|F ) : conditional expectation of r.v. X with respect to F

V ar(X) : variance of a r.v. X

V ar(X|F ) : conditional variance of r.v. X with respect to F

Cov(X,Y ) : covariance of X and Y

Xn
a.s.→ X : Xn converges almost surely to X

Xn
p→ X : Xn converges in probability to X

Xn
d→ X : Xn converges in distribution to X

N(μ, σ2) : normal distribution with mean μ and variance σ2

Φ(x) : standard normal probability distribution function

{Xt} : a time series process
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{T̂N} : Cramér-von Mises statistics

AR : autoregressive process

MA : moving average process

ARMA : autoregressive moving average process

TAR : Threshold autoregressive process

ARCH(p) : autoregressive conditional heteroskedastic process of order p

GARCH : generalized ARCH process
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Abstract

In this thesis, the limiting Gaussian distribution of a class of Cramér-von Mises

statistics {T̂N} for two-sample problem pertaining to empirical processes of the

squared residuals from two independent samples of ARCH processes is elucidated.

A distinctive feature is that, unlike the residuals of ARMA processes, the asymp-

totics of {T̂N} depend on those of ARCH volatility estimators. Based on the

asymptotics of {T̂N}, we numerically assess the relative asymptotic efficiency and

ARCH volatility effect for some ARCH residual distributions. Moreover, a mea-

sure of robustness for {T̂N} is introduced. Then this aspect of {T̂N} based on

such residual distributions is illustrated numerically. In contrast with the i.i.d.

or ARMA settings, these studies illuminate some interesting features of ARCH

residuals.
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Key phrases

ARMA process; ARCH process; squared residuals; empirical process; two-sample

Cramér-von Mises statistic; asymptotic normality; asymptotic relative efficiency;

ARCH volatility effect; robustness.
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Preface

In the i.i.d. settings, two-sample problem is one of the important statistical

problems. For this problem, the study of the asymptotic properties based on

the celebrated Cramér-von Mises statistics is fundamental and an essential part

of nonparametric statistics. Many researchers have contributed to their develop-

ment, and numerous theorems have been formulated in many testing problems.

Most of the techniques employed in one-sample case have very close counterparts

in the two-sample situation.

For a two-sample Cramér-von Mises statistic in the i.i.d. settings, Anderson

(1962) derived the exact distribution and he compared its limiting distribution

with the exact one, and found that a good approximation to the exact distribution

for moderate sample sizes. He also reported that the accuracy of his approxima-

tion is better than that of the two-sample Kolmogrov-Smirnov statistics studied

by Hodges (1957). An excellent account of Cramér-von Mises tests is given in

Durbin (1973) and we refer the reader to this reference for details and further

references.

The main object of this thesis is to elucidate the asymptotic theory of the

two-sample Cramér-von Mises statistics {T̂N} for ARCH residual empirical pro-

cesses based on the techniques of Chernoff and Savage (1958) and Horváth et al.

(2001). Since the asymptotics of the residual empirical processes are different

from those for the usual ARMA case, the limiting distribution of {T̂N} is greatly

different from that of ARMA case (of course i.i.d. case). More concretely, the

thesis is organized as follows.
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Chapter 1 provides the introduction and summary of the thesis. It briefly

discusses some basic and important results, which will help to better understand

the main result formulated in this thesis.

Chapter 2 gives the setting of {T̂N} pertaining to empirical processes based

on the squared residuals from two independent samples of ARCH(p) processes

and establishes its limiting Gaussian distribution.

This result, in Chapter 3 facilitates the study of asymptotic performance of

{T̂N}, like the relative asymptotic efficiency and ARCH volatility effect for some

ARCH residual distributions. Moreover, we introduce a robustness measure for

{T̂N} by means of the influence function. Then this aspect of {T̂N} based on such

residual distributions is illustrated by simulations.

Chapter 4 gives the proof of our theorem formulated in Chapter 2.

Finally, Chapter 5 provides the concluding remarks and gives a brief outline

of the related research that can be carried out in future.
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Chapter 1

Introduction and Summary

In this chapter, we provide the introduction and summary to the thesis. In par-

ticular, the preliminary concepts, CLS estimation, ARCH processes, background

and related work, and motivation. These aspects facilitates the understanding of

the main result (Theorem 2) given in Chapter 2.

1.1 Preliminary Concepts

1.1.1 Time Series Analysis

A time series {Xt} is a sequence of values of a variable at equally spaced time in-

terval t. Statisticians usually view a time series as a realization from a stochastic

process. One distinguishing feature in time series is that the records are usu-

ally dependent. Due to different applications, the data may be collected hourly,

daily weekly, monthly, or yearly, and so on. The objectives of time series analysis

are diverse, depending on the background of applications. The main objectives

of time series analysis are to understand the underlying dynamics and structure

that produced the observed data, forecast future events, and control future events
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via intervention. Time series analysis is used for many applications such as eco-

nomic forecasting, sales forecasting, budgetary analysis, stock market analysis,

yield projections, process and quality control, inventory studies, workload pro-

jections, utility studies, census studies and so forth.

A common assumption in many time series techniques is that the data is

stationary. A stationary process has the property that the mean, variance and

autocorrelation structure do not change overtime. Stationarity can be defined in

precise mathematical terms, but for our purpose we mean a flat looking series,

without trend, constant variance over time, a constant autocorrelation structure

over time and no periodic fluctuations (seasonality).

A Discrete-time series is one in which the set t of times at which observations

are made at fixed time intervals, e.g., t = 1, . . . ,m. A Continuous-time series is

obtained when observations are recorded continuously over some time interval,

e.g., t = [0, 1].

Linear Time Series Models

The most popular class of linear time series models is the autoregressive moving

average (ARMA) models, which includes the autoregressive (AR) and moving

average (MA) models as special cases. The ARMA model is the most commonly

used to model linear dynamic structures to depict linear relationships among

lagged variables, and to serve as vehicles for linear forecasting.

Nonlinear Time Series Models

The long-lasting popularity of ARMA models convincingly justifies the usefulness

of linear models for analyzing time series data. Nevertheless, in view of the fact

that any statistical model is an approximation to the real world, a linear model

is merely a first step in representing an unknown dynamic relationship in terms

of a mathematical formula. The truth is that the world is nonlinear! Therefore,
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it is not surprising that there exists an abundance of empirical evidence indi-

cating the limitation of the linear ARMA family, when applied to the field of

financial and monetary economics. To model a number of nonlinear features such

as dependence beyond linear correlation, we need to appeal to nonlinear models.

Several typical examples of nonlinear models are ARCH, Threshold autoregres-

sive (TAR), generalized autoregressive conditional heteroskedastic (GARCH) and

exponential ARCH models.

1.1.2 Convergence and Bounded in Probability

Concepts of relative magnitude or order of magnitude are useful in investigating

limiting behavior of r.v.’s. We first define the concepts of order as used in real

analysis. Let {an}∞n=1 be a sequence of real numbers and {bn}∞n=1 be a sequence

of positive real numbers (see e.g., Sen and Singer (1993)).

Convergence in Probability to Zero

Definition 1. We say that an converges in probability to zero, written an = op(1)

or an
p→ 0, if for every ε > 0,

P (|an| > ε) → 0 as n → ∞.

Definition 2. We say that an = o(bn) as n → ∞ if

an/bn → 0.

When an and bn tend to infinity, this states that an tends to infinity more slower

than bn; when both tends to 0, it states that an tends to 0 much faster than bn.

Note: o(an) denotes any quantity tending to 0 faster than an.
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Bounded in Probability

Definition 3. A sequence {an} is bounded in probability (or tight), written

an = Op(1) if for every ε > 0, there exists δ(ε) ∈ (0,∞) such that

P (|an| > δ(ε)) < ε for all n.

Note:

1. an = O(bn) means that an is of order smaller than or equal to that of bn.

2. an = O(bn) if |an/bn| is bounded.

Related Properties:

(i) an converges in probability to a, a ∈ R, written an
p→ a, if and only if

an − a = op(1).

(ii) an = op(bn) if and only if bn
−1an = op(1).

(iii) an = Op(bn) if and only if bn
−1an = Op(1).

1.1.3 Taylor Expansion in Probability

Let {Xn} be a sequence of random variables such that Xn = a + Op(1), where

a ∈ R. If g is continuous at a then g(Xn) = g(a) + op(1). If we strengthen the

assumptions on g to include the existence of derivatives, then it is possible to

derive probabilistic analogues of the Taylor expansions of non-random functions

about a given point a. Now, Xn = a + Op(rn), where 0 < rn → 0 as n → ∞. If g

is a function with s derivatives at a, then,

G(Xn) =
s∑

j=0

g(j)(a)

j!
(Xn − a)j + op(r

s
n),

where g(j) is the jth derivative of g and g(0) = g.
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1.1.4 Empirical Distribution Function

Let X be a real-valued r.v. with d.f. F (= {F (x) : x ∈ R}). Consider a sam-

ple of m i.i.d. r.v.’s {X1, X2, ...Xm} drawn from the d.f. F . Write Fm(x) =

m−1
m∑

i=1

I{Xi≤x}. Then mFm(x) is the number of X ′
is, 1 ≤ i ≤ m that are ≤ x.

The quantity Fm(x) is called the sample or empirical distribution function. We

note that 0 ≤ Fm(x) ≤ 1 for all x, and moreover, that Fm is right continuous,

nondecreasing, and Fm(−∞) = 0 and Fm(∞) = 1.

If X(1), X(2), ..., X(m) is the ordered statistic for X1, X2, ..., Xm, then

Fm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x < X(1)

k
m

, if X(k) ≤ x < X(k+1) (k = 1, 2, ...,m − 1).

1, if x ≥ X(m)

The r.v. Fm(x) has the probability function

P

[
Fm(x) =

j

m

]
=

(
m

j

)
[F (x)]j[1 − F (x)]m−j, j = 0, 1, ...,m,

with

E(Fm(x)) = m−1

m∑
i=1

E{I{Xi≤X}} = m−1

m∑
i=1

P{Xi ≤ x} = F (x),

V ar(Fm(x)) =
F (x)[1 − F (x)]

m
,

and

E{[Fm(x) − F (x)]}{[Fm(y) − F (y)]} =
F (x){1 − F (y)}

m
, x ≤ y.

It is also known that

Fm(x)
p−→ F (x) as m → ∞,

√
m[Fm(x) − F (x)]√
F (x)[1 − F (x)]

d−→ N (0, 1) as m → ∞,

(see e.g., Sen and Singer (1993)).
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1.2 Conditional Least Squares Estimation

In this section, we state Tjøstheim’s theorem (1986) which was essentially ob-

tained by reformulating and extending the arguments of Klimko and Nelson

(1978) to nonlinear time series.

Let {Xt; t = 0,±1, ...} be a strictly stationary and ergodic process taking

values in Rp and defined on the probability space (Ω,F , P ). Here, {Xt} is pos-

sibly a strictly stationary ergodic nonlinear time series. In addition, suppose

that E{‖Xt‖2} < ∞ so that {Xt} is second order stationary, where ‖.‖ denotes

the Euclidean norm. We assume that observations (X1, ..., Xn) are available.

The probability distribution of (X1, ..., Xn) is specified by unknown parameter

θ = (θ1, ..., θq)
T ∈ Θ ⊂ Rq. Its true value is denoted by θ0. Then consider a

general real-valued penalty function Qn(θ) = Qn(X1, ..., Xn; θ) depending on the

observations and θ ∈ Θ.

Let us now specify the penalty function. Let Ft(m) be the σ-field generated

by {Xs; t − m ≤ s ≤ t}, where m is an appropriate integer. If {Xt} is a non-

linear autoregressive model of order k, we can take m = k. Let X̃t|t−1(θ) =

Eθ{Xt|Ft−1(m)} be an optimal one-step least squares predictor of Xt based on

Xt−1, ..., Xt−m. Then the penalty function becomes

Qn(θ) =
n∑

t=m+1

{Xt − X̃t|t−1(θ)}T{Xt − X̃t|t−1(θ)}.

The conditional least squares (CLS) estimator θ̂
(CL)
n of θ is defined by

θ̂(CL)
n = arg min

θ∈Θ
Qn(θ).

Hence, we have the following theorem.

Theorem 1. (Tjøstheim, 1986). Suppose that {Xt} is a p-dimensional strictly

stationary process with E{‖Xt‖2} < ∞ and that X̃t|t−1(θ) = Eθ{Xt|Ft−1(m)} is

almost surely three times continuously differentiable with respect to θ in an open
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set Θ containing θ0. Moreover, suppose that the following conditions hold:

(i)

E

{∥∥∥∥ ∂

∂θi

X̃t|t−1(θ
0)

∥∥∥∥2}
< ∞ and E

{∥∥∥∥ ∂2

∂θi∂θj

X̃t|t−1(θ
0)

∥∥∥∥2}
< ∞

for i, j = 1, . . . , p.

(ii) The vectors ∂X̃t|t−1(θ
0)/∂θi, i = 1, . . . , p, are linearly independent in the

sense that if c1, . . . , cp, are arbitrary real numbers such that

E

{∥∥∥∥
p∑

i=1

ci
∂

∂θi

X̃t|t−1(θ
0)

∥∥∥∥2}
= 0,

then c1 = · · · = cp = 0.

(iii) For θ ∈ Θ, there exist functions Gijk
t−1(X1, . . . , Xt−1) and H ijk

t (X1, . . . , Xt)

such that∣∣∣∣ ∂

∂θi

X̃T
t|t−1(θ)

∂2

∂θj∂θk

X̃t|t−1(θ)

∣∣∣∣ ≤ Gijk
t−1, E(Gijk

t−1) < ∞,

∣∣∣∣{Xt − X̃t|t−1(θ)}T ∂3

∂θi∂θj∂θk

X̃t|t−1(θ)

∣∣∣∣ ≤ H ijk
t , E(H ijk

t ) < ∞,

for i, j, k = 1, . . . , p.

(iv)

R = E

{
∂

∂θ
X̃T

t|t−1(θ
0){Xt − X̃t|t−1(θ

0)}

×{Xt − X̃t|t−1(θ
0)}T ∂

∂θ
X̃t|t−1(θ

0)

}
< ∞.

Then there exists a sequence of estimators θ̂
(CL)
n such that θ̂

(CL)
n

a.s−→ θ0 as n → ∞,

and for any ε > 0, there exists an event E with P (E) > 1− ε and an n0 such that

on E, for n > n0, (∂/∂θ)Qn(θ̂
(CL)
n ) = 0, and Qn attains a relative minimum at
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θ̂
(CL)
n . Moreover, if there exists a positive integer m satisfying Eθ{Xt|Ft(m)} =

Eθ(Xt|Ft), where Ft is the σ-field generated by {Xs, s ≤ t}, then as n → ∞,

√
n(θ̂(CL)

n − θ0)
d−→ N (0, U−1RU−1),

where

U = E

{
∂

∂θ
X̃T

t|t−1(θ
0)

∂

∂θ
X̃t|t−1(θ

0)

}
.

The conditional least squares (CLS) estimation approach provides a unified

treatment of estimation problems for widely used classes of nonlinear time series.

1.3 ARCH Process

Models that make use of recent available information will be able to forecast better

than other models that do not take into account this information. This is one of

the reasons why these models benefit particularly from focussing on establishing

the difference between conditional and unconditional moments. Conventional

econometric models do not allow for a conditional variance whose values depend

on the past information, so volatility clustering is not a phenomenon that can be

understood with the aid of these traditional models.

Analysis of financial data has received a considerable amount of attention in

the literature during the past two decades. Several models have been suggested

to capture special features of financial data and most of these models have the

property that the conditional variance depends on the past. One of the well known

and most heavily used examples is the class of ARCH(p) processes, introduced

by Engle (1982) to model the volatility of the UK inflation data. Since then,

ARCH related processes have become perhaps the most popular and extensively

studied financial econometric models (Engle (1995), Tsay (2002), Chandra and
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Taniguchi (2003)). An ARCH(p) process is characterized by the equations

Xt =

⎧⎪⎨
⎪⎩

σt(θ)εt, σ2
t (θ) = θ0 +

p∑
i=1

θiX2
t−i, t = 1, . . . ,m,

0, t = −p + 1, . . . , 0.

(1.1)

where {εt} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant

κ4, θ = (θ0, θ1, ...., θp)T ∈ Θ ⊂ Rp+1 is an unknown parameter vector satisfying

θ0 > 0, θi ≥ 0, i = 1, . . . , p, and εt is independent of Xs, s < t.

Since traditional time series models assume a constant one-period forecast

variance, the ARCH model was introduced to overcome this implausible assump-

tion. The process {Xt} is serially uncorrelated with zero mean and nonconstant

variance conditional on the past values.

It became clear that ARCH models could efficiently and quite easily represent

the typical empirical findings in financial time series, e.g the conditional het-

eroskedasticity. Financial time series present nonlinear dynamic characteristics

and the ARCH models offer a more adaptive framework for this type of problem.

In particular after the collapse of the Bretton Woods system and the implemen-

tation of flexible exchange rates in the seventies ARCH models are increasingly

used by researchers and practitioners. The financial data is known to have fat

tailed distributions and volatility clustering. It has been shown that realizations

from ARCH type models can exhibit this behavior so that it is of interest to

consider the implications if financial data follow ARCH models. As the name

suggests, the model has the following properties:

• Autoregression- uses previous estimates of volatility to calculate subsequent

future values. Hence volatility values are closely related.

• Heteroskedasticity- the probability distributions of the volatility varies with

the current value.

Existing literature assumes as a minimal requirement of {Xt} to be ergodic or

stationary so that the laws of large numbers can be applied. Moreover the generic
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assumption for asymptotic normality is that the squared error process has finite

variance. From the view point of statistical theory, ARCH models may be con-

sidered as a specific nonlinear time series models which allow for an exhaustive

study of the underlying dynamics. The literature on the subject is so vast that

we restrict ourselves to directing the reader to fairly comprehensive reviews by

Bollerslev et al. (1992) and Shepard (1996). A detail treatment of ARCH models

at a textbook level is also given by Gouriéroux (1997).

Simulated ARCH Graphs

Let us consider the ARCH(1) process defined by the equations

Xt =

⎧⎨
⎩ σt(θ)εt, σ2

t (θ) = θ0 + θ1X2
t−1 for t = 1, . . . ,m,

0 for t ≤ 0,

where {εt} is a sequence of i.i.d. (0, 1) r.v., θ = (θ0, θ1)T , θ0 > 0, 0 ≤ θ1 < 1, and

εt is independent of Xs, s < t.

For values θ0 = 0.2, θ1 = 0; 0.8 and n = 100, the graphs are plotted in Figures

1 and 2. It is apparent from these graphs the effect on the appearance of the time

series {Xt} of varying the parameter θ1.

Figure 1 displays white noise (θ1 = 0). A series with no autocorrelation

looks choppy and patternless to the eye; the value of the observation gives no

information about the value of the next observation. In Figure 2, the series

seems smoother, with observations above or below the mean often appearing in

clusters of modest duration.
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Figure 1: θ0 = 0.2, θ1 = 0, n = 100
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Figure 2: θ0 = 0.2, θ1 = 0.8, n = 100
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1.4 Background and Related Work

One of the first ARCH papers was on ”ARCH with Estimates of the Variance of

UK Inflation” by Engle, published in Econometrica in 1982. Traditional econo-

metric models assume a constant one-period forecast variance. To overcome this

implausible assumption, this new class of stochastic processes called ARCH pro-

cesses was used to estimate the means and variances of the UK inflation data.

While some aspects of this paper have been bypassed by subsequent research, it

remains an excellent introduction.

Since then, variations, extensions, and applications of this model have been

breathtaking and intimidating. Many papers have appeared in many different

places and have been applied to many different settings. The implementation of

this model is relatively simple and from practical a point of view, it’s well known

how to identify, estimate and test this model.

In the estimation of ARCH model, Tjøstheim (1986) proposed a conditional

least squares (CLS) estimator, and discussed its asymptotics. As another method,

Godambe (1985) developed the theory of estimating function and introduced

the concept of asymptotically optimal estimating function (see e.g., Chandra

(2001a)).

For an ARCH(p) process, Horváth et al. (2001) derived the limiting distribu-

tion of the empirical process based on the squared residuals which is considered of

fundamental importance for statistical analysis. Then they showed that, unlike

the residuals of ARMA models, these residuals do not behave in this context like

asymptotically independent random variables, and the asymptotic distribution

involves a term depending on estimators of the volatility parameters of the pro-

cess. Also Lee and Taniguchi (2005) proved the local asymptotic normality for

ARCH(∞) models, and discussed the residual empirical process for an ARCH(p)

model with stochastic mean.

Further, Giraitis et al. (2000) discussed a class of ARCH(∞) models, which
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includes that of ARCH(p) models as a special case, and established sufficient

conditions for the existence of a stationary solution and gave its explicit repre-

sentation.

For a two-sample Cramér-von Mises statistic in the i.i.d. settings, Anderson

(1962) derived the exact distribution and he compared its limiting distribution

with the exact one, and found that a good approximation to the exact distribution

for moderate sample sizes. He also reported that the accuracy of his approxima-

tion is better than that of the two-sample Kolmogrov-Smirnov statistics studied

by Hodges (1957).

More recently, Chandra and Taniguchi (2003) elucidated the asymptotics of

the rank order statistics for ARCH residual empirical processes. Most of the

techniques employed in the preceding paper have very close counterparts in this

thesis.

1.5 Motivation

As volatility ebbs and flows in financial market and as more and more volatility

and correlation- dependent securities are priced and traded, the demand for good

models, processes and forecasts pushes the research forward.

Thus this study motivates us to consider two independent samples from ARCH(p)

processes {Xt} (a target process) and {Yt}. The corresponding squared innova-

tion processes are, say, {Ux,t} and {Uy,t} with possibly non-Gaussian distributions

F and G. To know the possible differences between these distributions, an ap-

propriate nonparametric technique is employed based on a class of Cramér-von

Mises statistics {T̂N}. Such statistics serves as a basis for the comparison in terms

of tests of goodness of fit.
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Chapter 2

Two-sample Cramér-von Mises

statistics and main result

In this chapter we study a class of Cramér-von Mises statistics (see e.g., Durbin

(1973, p.44)) for two-sample problem pertaining to empirical processes based on

the squared residuals from two independent samples of ARCH processes.

2.1 Two Independent ARCH Processes

A class of ARCH(p) processes is characterized by the equations

Xt =

⎧⎪⎨
⎪⎩

σt(θx)εt, σ2
t (θx) = θ0

x +
px∑
i=1

θi
xX

2
t−i, t = 1, . . . ,m,

0, t = −px + 1, . . . , 0.

(2.1)

For this model, we impose the following condtions.

Assumption 1.

(i) {εt} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant

κx
4.

14



(ii) θx = (θ0
x, θ

1
x, ...., θ

px
x )T ∈ Θx ⊂ Rpx+1 is an unknown parameter vector satis-

fying θ0
x > 0, θi

x ≥ 0, i = 1, . . . , px − 1, θpx
x > 0.

(iii) θ1
x + · · · + θpx

x < 1 for stationarity (see Milhøj (1985)).

(iv) εt is independent of Xs, s < t.

(v) F (x) is the distribution function of ε2
t and its density f(x) = F ′(x) is

continuous on (0,∞).

Another class of ARCH(p) processes, independent of {Xt}, is defined similarly

by the equations

Yt =

⎧⎪⎨
⎪⎩

σt(θy)ξt, σ2
t (θy) = θ0

y +
py∑
i=1

θi
yY

2
t−i, t = 1, . . . , n,

0, t = −py + 1, . . . , 0,

(2.2)

satisfying the following conditions.

Assumption 2.

(i) {ξt} is a sequence of i.i.d.(0,1) random variables with fourth-order cumulant

κy
4.

(ii) θy = (θ0
y, θ

1
y, ...., θ

py
y )T ∈ Θy ⊂ Rpy+1, θ0

y > 0, θi
y ≥ 0, i = 1, . . . , py − 1,

θ
py
y > 0, are unknown parameters.

(iii) θ1
y + · · · + θ

py
y < 1 for stationarity.

(iv) ξt is independent of Ys, s < t.

(v) G(x) is the distribution function of ξ2
t and g(x) = G′(x) is continuous on

(0,∞).
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2.2 Two-Sample Problem and ARCH Estima-

tion

In the following, we are concerned with the two-sample problem of testing

H0 : F (x) = G(x) for all x against HA : F (x) 
= G(x) for some x. (2.3)

We first consider the estimation of θx and θy. Write ζx,t = (ε2
t − 1)θT

x Wx,t−1 and

Zx,t = X2
t , Wx,t = (1, Zx,t, . . . , Zx,t−px+1)

T . Then the autoregressive representa-

tion is given by

Zx,t = θT
x Wx,t−1 + ζx,t, 1 ≤ t ≤ m,

and analogously for (2.2),

Zy,t = θT
y Wy,t−1 + ζy,t, 1 ≤ t ≤ n,

where ζy,t = (ξ2
t − 1)θT

y Wy,t−1 and Zy,t = Y 2
t , Wy,t = (1, Zy,t, . . . , Zy,t−py+1)

T .

Note that ζx,t and ζy,t are the martingale difference since

E(ζx,t|Fx
t−1) = E(ζy,t|Fy

t−1) = 0,

where Fx
t = σ{Zx,t, Zx,t−1, ...} and Fy

t = σ{Zy,t, Zy,t−1, ...}. Suppose that observed

stretches Zx,1, ..., Zx,m and Zy,1, ..., Zy,n from {Zx,t} and {Zy,t}, respectively, are

available. Thus from Theorem 1, the corresponding conditional least squares

estimators of θx and θy are given by

θ̂x,m = (θ̂0
x,m, . . . , θ̂px

x,m)T = arg min
θx

Qm(θx)

and

θ̂y,n = (θ̂0
y,n, . . . , θ̂py

y,n)T = arg min
θy

Qn(θy),

where

Qm(θx) =
m∑

t=1

(Zx,t − θT
x Wx,t−1)

2 and Qn(θy) =
n∑

t=1

(Zy,t − θT
y Wy,t−1)

2.
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Here, we assume that θ̂x,m and θ̂y,n are asymptotically consistent and normal with

rate m−1/2 and n−1/2, respectively, i.e.,

m1/2‖θ̂x,m − θx‖ = Op(1) and n1/2‖θ̂y,n − θy‖ = Op(1). (2.4)

where ‖.‖ denotes the Euclidean norm. For validity of (2.4), (Tjøstheim (1986),

pp.254-256) gave a set of sufficient conditions. Conditions (2.4) are also satisfied

by the pseudo-maximum likelihood and conditional likelihood estimators (see e.g.,

Gouriéroux (1997)).

The corresponding empirical squared residuals are given by

ε̂2
t = X2

t /σ2
t (θ̂x,m), 1 ≤ t ≤ m and ξ̂2

t = Y 2
t /σ2

t (θ̂y,n), 1 ≤ t ≤ n, (2.5)

where

σ2
t (θ̂x,m) = θ̂0

x,m +

px∑
i=1

θ̂i
x,mX2

t−i and σ2
t (θ̂y,n) = θ̂0

y,n +

py∑
i=1

θ̂i
y,nY 2

t−i.

2.3 Derivation of ̂HN(x)

For the testing problem (2.3), we begin by describing our approach in line with

Chernoff and Savage (1958). Put N = m+n and λN = m/N . For (2.5), the sizes

m and n are assumed to be such that the inequalities

0 < λ0 ≤ λN ≤ 1 − λ0 < 1

hold for some fixed λ0 ≤ 1
2
. Then the combined distribution function is defined

by

HN(x) = λNF (x) + (1 − λN)G(x),

where 0 < HN < 1. In the same way, if F̂m(x) and Ĝn(x) denote the empirical

distribution functions of {ε̂2
t} and {ξ̂2

t }, the corresponding empirical distribution

function is

ĤN(x) = λN F̂m(x) + (1 − λN)Ĝn(x). (2.6)
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Write

B̂m(x) = m1/2(F̂m(x) − F (x)) = m−1/2

m∑
t=1

(I(ε̂2
t ≤ x) − F (x)) and

B̂n(x) = n1/2(Ĝn(x) − G(x)) = n−1/2

n∑
t=1

(I(ξ̂2
t ≤ x) − G(x)),

where I(A) is the indicator function of the event A. Then from the result by

Horváth et al. (2001) (see also Lee and Taniguchi (2005)), we observe that the

quantity B̂m(x) has the following representation,

B̂m(x) = m1/2(Fm(x) − F (x)) + Axxf(x) + lower order terms, (2.7)

where

Fm(x) =
1

m

m∑
t=1

I(ε2
t ≤ x) and Ax =

∑
0≤i≤px

m1/2(θ̂i
x,m − θi

x)τx,i (2.8)

with

τx,0 = E(1/σ2
t (θx)) and τx,i = E(X2

t−i/σ
2
t (θx)), 1 ≤ i ≤ px.

By analogy with (2.7), the corresponding representation of B̂n(x) is given by

B̂n(x) = n1/2(Gn(x) − G(x)) + Ayxg(x) + lower order terms, (2.9)

where

Gn(x) =
1

n

n∑
t=1

I(ξ2
t ≤ x) and Ay =

∑
0≤i≤py

n1/2(θ̂i
y,n − θi

y)τy,i (2.10)

with

τy,0 = E(1/σ2
t (θy)) and τy,i = E(Y 2

t−i/σ
2
t (θy)), 1 ≤ i ≤ py.

Hence, from (2.7) and (2.9), the expression (2.6) becomes

ĤN(x) = HN(x) + m−1/2λNAxxf(x)

+n−1/2(1 − λN)Ayxg(x) + lower order terms, (2.11)

where

HN(x) = λNFm(x) + (1 − λN)Gn(x)

with 0 < HN < 1. The decomposition (2.11) is basic and will be used repeatedly

in the sequel.
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2.4 Cramér-von Mises Statistics { ̂TN}
For the testing problem (2.3), let us consider a class of Cramér-von Mises statistics

of the form

T̂N =

∫
(F̂m(x) − Ĝn(x))2dĤN(x). (2.12)

Note that (2.12) is constructed from the empirical residuals {ε̂2
t} and {ξ̂2

t }. Like-

wise, if we construct it replacing {ε̂2
t} and {ξ̂2

t } by {ε2
t} and {ξ2

t }, respectively,

then it becomes the usual Cramér-von Mises statistic (see e.g., Durbin (1973,

p.47))

TD
N =

∫
(Fm(x) − Gn(x))2dHN(x).

This statistic was essentially proposed by Lehmann (1951) and studied by many

researchers (Anderson (1962), Ahmad (1996)) who contributed to its develop-

ment, and numerous theorems have been formulated in many testing problems.

Noting that under H0 : F = G, the quantity HN converges to F almost surely, and

we may conclude under certain regularity conditions that (mn/N)T D
N converges

in law to ∫ 1

0

Z2(t)dt,

where {Z(t); 0 ≤ t ≤ 1} is a Gaussian process with

E(Z(t)) = 0 and E(Z(s)Z(t)) = min(s, t) − st, 0 ≤ s, t ≤ 1.

2.5 Asymptotic Theory of { ̂TN}
The object of this section is to elucidate the asymptotics of (2.12). In what fol-

lows, K will denote a generic constant which does not depend on F , G, m, n and

N .

We impose the following regularity conditions.
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Assumption 3.

(A.1) |(F − G)(x)| < K(HN(x)(1 − HN(x)))1/2 for all x > 0 and K > 0.

(A.2) xf(x), xg(x), xf ′(x) and xg′(x) are uniformly bounded continuous, and

integrable functions on (0,∞).

(A.3) |xf(x)| < KHN(x)(1 − HN(x)) and |xg(x)| < KHN(x)(1 − HN(x)) for all

x > 0 and K > 0.

(A.4) There exists c > 0 such that F (x) ≥ c{xf(x)} and G(x) ≥ c{xg(x)} for all

x > 0.

Returning to the models {Xt} and {Yt}, we now impose a further condition

on θx and θy, and the moment of εt and ξt. For this purpose, write

Ax,t =

⎛
⎜⎜⎜⎜⎜⎜⎝

θ1
xε

2
t · · · θpx−1

x ε2
t θpx

x ε2
t

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Ay,t =

⎛
⎜⎜⎜⎜⎜⎜⎝

θ1
yξ

2
t · · · θ

py−1
y ξ2

t θ
py
y ξ2

t

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Introduce the notation

A⊗s
x,t = Ax,t

s times︷ ︸︸ ︷⊗ · · ·⊗Ax,t

(e.g., Hannan (1970, p.518)), and define

Σx,s = E(A⊗s
x,t) and Σy,s = E(A⊗s

y,t),

where ⊗ denotes the tensor product.
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Assumption 4.

(B.1) ε2
t and ξ2

t are nondegenerate random variables.

(B.2) E|εt|8 < ∞ and ‖Σx,3‖ < 1, E|ξt|8 < ∞ and ‖Σy,3‖ < 1,

where ‖ ·‖ is the spectral matrix norm. From this and the result by Chen and An

(1998), it follows that E(Z4
x,t) < ∞ and E(Z4

y,t) < ∞. For the case when px = 1,

and {εt} is Gaussian, we see that ‖Σx,3‖ < 1 implies θ1
x < 15−

1
3 ≈ 0.4.

In order to state the main result, we observe that the matrices

Ux = E(Wx,t−1W
T
x,t−1), Uy = E(Wy,t−1W

T
y,t−1),

and

Rx = (κx
4 + 2)E(σ4

t (θx)Wx,t−1W
T
x,t−1)

and

Ry = (κy
4 + 2)E(σ4

t (θy)Wy,t−1W
T
y,t−1)

are positive definite. To justify Rx as an illustration, first observe that it is

evidently nonnegative definite,

αTRxα = (κx
4 + 2)E(αT σ2

t (θx)Wx,t−1)
2 ≥ 0

for any α = (α0, α1, . . . , αpx)
T ∈ Rpx+1. Moreover, if we suppose that Rx is not

positive definite, then there exists a vector (α0, α1, . . . , αj0) with αj0 
= 0 (j0 ≤ px)

such that

α0 + α1Zx,s−1 + · · · + αj0Zx,s−j0 = 0 a.e..

Here, note that σ2
t (θx) > 0 a.e., because of θ0

x > 0. In this case, we can write

Zx,s−j0 = −β0 − β1Zx,s−1 − · · · − βj0−1Zx,s−j0+1,

where βk = αk/αj0 . Hence, substituting this into the last term of σ2
s(θx) in (2.1)

with setting s−j0 = t−px reveals that the dimension of our ARCH(px) is reduced
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to be less than px, leading to a contradiction.

Now recalling the definition of Qm(θx) and Qn(θy), we observe that

∂Qm

∂θ0
x

= −2
m∑

t=1

(ε2
t − 1)σ2

t (θx) = −2
m∑

t=1

φx(ε
2
t )σ

2
t (θx),

∂Qm

∂θi
x

= −2
m∑

t=1

(ε2
t − 1)σ2

t (θx)Zx,t−i = −2
m∑

t=1

φx(ε
2
t )σ

2
t (θx)Zx,t−i, 1 ≤ i ≤ px,

and

∂Qn

∂θ0
y

= −2
n∑

t=1

(ξ2
t − 1)σ2

t (θy) = −2
n∑

t=1

φy(ξ
2
t )σ

2
t (θy),

∂Qn

∂θi
y

= −2
n∑

t=1

(ξ2
t − 1)σ2

t (θy)Zy,t−i = −2
n∑

t=1

φy(ξ
2
t )σ

2
t (θy)Zy,t−i, 1 ≤ i ≤ py,

where φ.(u) = u − 1. Write

γx,t = (σ2
t (θx), σ

2
t (θx)Zx,t−1, . . . , σ

2
t (θx)Zx,t−px)

T

and

γy,t = (σ2
t (θy), σ

2
t (θy)Zy,t−1, . . . , σ

2
t (θy)Zy,t−py)

T .

Then, under certain regularity conditions, it is seen that the corresponding ith

element of θ̂x,m and θ̂x,n admits the stochastic expansions,

θ̂i
x,m − θi

x =
1

m

m∑
t=1

V i
x,tφx(ε

2
t ) + op(m

−1/2), 0 ≤ i ≤ px and (2.13)

θ̂i
y,n − θi

y =
1

n

n∑
t=1

V i
y,tφy(ξ

2
t ) + op(n

−1/2), 0 ≤ i ≤ py,

where V i
x,t and V i

y,t are the ith elements of U−1
x γx,t and U−1

y γy,t. Write

δx,i = E(V i
x,t), 0 ≤ i ≤ px, δy,i = E(V i

y,t), 0 ≤ i ≤ py,

and τx = (τx,0, . . . , τx,px)
T and τy = (τy,0, . . . , τy,py)

T (recall (2.8) and (2.10)).

Then, under HA : F 
= G, we have the following result, whose proof is given in

Chapter 4.
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Theorem 2. Suppose that Assumptions 1 − 4 hold and that, in addition, θ̂x,m

and θ̂y,n are the conditional least squares estimators of θx and θy satisfying (2.4).

Then

N1/2(T̂N − μN)/σN
d−→ N (0, 1) as N → ∞,

where

μN =
∫

(F (x) − G(x))2dHN(x) and σ2
N = σ2

1N + σ2
2N + σ2

3N + ζN 
= 0 with

σ2
1N = 8{λ−1

N

∫∫
x<y

A(x, y)dG(x)dG(y) + (1 − λN)−1

∫∫
x<y

B(x, y)dF (x)dF (y)},

σ2
2N = ωT

x,NU−1
x RxU−1

x ωx,N , σ2
3N = ωT

y,NU−1
y RyU−1

y ωy,N , and

ζN = −8{λ−1
N

∑
0≤i≤px

τx,iδx,i

∫∫
ψx(x)ρf (x, y)dG(x)dG(y)

−(1 − λN)−1
∑

0≤i≤py

τy,iδy,i

∫∫
ψy(x)ρg(x, z)dF (x)dF (z)},

where

A(x, y) = F (x)(F − G)(x)(1 − F (y))(F − G)(y),

B(x, y) = G(x)(F − G)(x)(1 − G(y))(F − G)(y),

ωx,N = −2λ
−1/2
N

∫
xf(x)(F − G)(x)dG(x) × τx,

ωy,N = −2(1 − λN)−1/2

∫
zg(z)(F − G)(z)dF (z) × τy,

ρf (x, y) = yf(y)(F − G)(x)(F − G)(y),

ρg(x, z) = zg(z)(F − G)(x)(F − G)(z),

ψx(x) =

∫ x

0

φx(u)f(u)du, ψy(x) =

∫ x

0

φy(u)g(u)du.

Remark 1. Observe that the terms (see Theorem 2) σ2
2N , σ2

3N and ζN depend on

the volatility estimators θ̂x,m and θ̂y,n. Hence, the asymptotics of {T̂N} are greatly

different in comparison with the independent, identically distributed or ARMA

settings, this result illuminates some interesting features of ARCH residuals.

Remark 2. For {T̂N} to be practically feasible, it is necessary to replace σ2
N

23



which depends on several unknown parameters and functions by a consistent es-

timator σ̂2
N . Observe that δx,i, τx,i, δy,j, τy,j; 0 ≤ i ≤ px, 0 ≤ i ≤ py, and ψx(x)

and ψy(x) are expected values and can be consistently estimated by the corre-

sponding averages. Note also that U−1
x RxU−1

x and U−1
y RyU−1

y are the asymptotic

covariance matrices of
√

m(θ̂x,m − θx) and
√

n(θ̂y,n − θy), respectively, and their

estimation is discussed in Gouriéroux (1997).
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Chapter 3

Asymptotic Performance of { ̂TN}

The limiting distribution of {T̂N} given in the preceding chapter provides a use-

ful guide to the reliability of asymptotic relative efficiency and ARCH volatility

effect. Thus we may proceed to illustrate these aspects of {T̂N} numerically for

some ARCH residual distributions. Moreover, a measure of robustness for {T̂N}
is introduced by means of Hampel’s influence function. Then this quantitative

information based on such ARCH residual distributions is illustrated by simula-

tions. The same study of {T̂N} is also demonstrated using the daily stock returns

of AMOCO and IBM companies of New York Stock Exchange from February 2,

1984, to December 31, 1991.

3.1 Asymptotic Relative Efficiency

In this section, we consider the assessment of asymptotic relative efficiency of

the statistics T D
N and T̂N for some residual distributions in the i.i.d. and in

our ARCH residual settings, respectively. The results help to highlight some

interesting features of T̂N in comparison with T D
N .
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For simplicity, let us consider the ARCH(1) model

Xt =

⎧⎨
⎩ σt(θx)εt, σ2

t (θx) = θ0
x + θ1

xX
2
t−1 for t = 1, . . . ,m,

0 for t ≤ 0,

where θx = (θ0
x, θ

1
x)

T , θ0
x > 0, 0 ≤ θ1

x < 1, {εt} is a sequence of i.i.d.(0,1) random

variables with fourth-order cumulant κx
4, and εt is independent of Xs, s < t.

Another ARCH(1) model, independent of {Xt}, is given by

Yt =

⎧⎨
⎩ σt(θy)ξt, σ2

t (θy) = θ0
y + θ1

yY
2
t−1 for t = 1, . . . , n,

0 for t ≤ 0,

where θy = (θ0
y, θ

1
y)

T , θ0
y > 0, 0 ≤ θ1

y < 1, {ξt} is a sequence of i.i.d.(0,1) random

variables with fourth-order cumulant κy
4, and ξt is independent of Ys, s < t.

Recall that F (x) and G(x) are the distribution functions of ε2
t and ξ2

t , re-

spectively. The hypothesis of interest in the two-sample problem is that H0 :

F (x) = G(x) for all x > 0. If one imposes conditions on the form of the common

distribution together with the assumption that a difference between the distri-

butions exist, it is only between means or between variances. The proposed test

procedure may be sensitive to violations of those assumptions which are inherent

in the construction of the test. In practice, other assumptions are often made

about the form of the underlying distributions. One common assumption is called

the location model.

Let us now consider the location problem in the case of G(x) = F (x + θ) for

some parameter θ. Henceforth, it is assumed that F is arbitrary and has finite

variance σ2
F . The two-sample testing problem for location can be described as

follows;

H0 : θ = 0 against HA : θ > 0.

In light of Theorem 2, we can readily see under H0 : θ = 0 that the distributions

F (x) and G(x) coincide for all x > 0. Thus, it is instructive to apply this theorem

under HA : θ > 0 since F (x) ≤ G(x) for all x > 0. In such a case, we may take,
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for example, HA : θ = 1. Assuming that m = n = N/2, the mean becomes

μF (θ) =
1

2

∫
(F (x) − F (x + θ))2d[F (x) + F (x + θ)]

and the variance under HA : θ = 1 is σ2
F = σ2

1(F ) + σ2
2(F ) + σ2

3(F ) + γ(F ), where

σ2
1(F ) = 16

∫∫
x<y

A∗(x, y)dxdy + 16

∫∫
x<y

B∗(x, y)dxdy,

σ2
2(F ) = 8Cx

(∫
xf(x)f(x + 1)[F (x) − F (x + 1)]dx

)2

,

σ2
3(F ) = 8Cy

(∫
zf(z)f(z + 1)[F (z) − F (z + 1)]dz

)2

,

γ(F ) = −16k1

∫∫ [∫ x

0

(u − 1)f(u)du

]
ρ∗

f (x, y)dxdy

+16k2

∫∫ [∫ x

0

(u − 1)f(u + 1)du

]
ρ∗∗

f (x, z)dxdz

with

A∗(x, y) = f(x + 1)f(y + 1)F (x)

×[F (x) − F (x + 1)][1 − F (y)][F (y) − F (y + 1)],

B∗(x, y) = f(x)f(y)F (x + 1)

×[F (x) − F (x + 1)][1 − F (y + 1)][F (y) − F (y + 1)],

Cx = τ̃T
x U−1

x RxU−1
x τ̃x, Cy = τ̃T

y U−1
y RyU−1

y τ̃y,

k1 = τx,0δx,0 + τx,1δx,1, k2 = τy,0δy,0 + τy,1δy,1,

ρ∗
f (x, y) = f(x + 1)[F (x) − F (x + 1)]yf(y)f(y + 1)[F (y) − F (y + 1)],

ρ∗∗
f (x, z) = f(x)[F (x) − F (x + 1)]zf(z)f(z + 1)[F (z) − F (z + 1)].

where τ̃x = (τx,0, τx,1)
T and τ̃y = (τy,0, τy,1)

T .

To begin with, let us state a set of Pitman regularity conditions which makes

the computation of efficiency for two test sequences quite easy in the case of

finite sample sizes. Suppose that T̂N is a test statistic based on the first N

observations for testing H0 : θ = θ0 against HA : θ > θ0 with critical region

T̂N ≥ λN,α. Further, suppose
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(i) limN→∞ Pθ0(T̂N ≥ λN,α) = α, where 0 < α < 1 is a given level;

(ii) there exist functions μN(θ) and σN(θ) such that N 1/2(T̂N−μN(θ))/σN(θ)
d→

N (0, 1)

uniformly in θ ∈ [θ0, θ0 + ε], ε > 0;

(iii) μ′
N(θ0) > 0;

(iv) for a sequence {θN = θ0 + N−1/2δ, δ > 0},

lim
N→∞

[μ′
N(θN)/μ′

N(θ0)] = 1, lim
N→∞

[σN(θN)/σN(θ0)] = 1;

(v) limN→∞[μ′
N(θ0)/σN(θ0)] = c > 0.

For α ∈ (0, 1), write λα = Φ−1(1 − α), where Φ(x) =
∫ x

−∞(2π)−1/2e−t2/2dt. Then

the asymptotic power is given by 1 − Φ(λα − δc). The quantity c defined by (v)

is called the efficacy of T̂N . It is known that the asymptotic power, in addition

to providing a measure of performance, also serves as a basis for the comparison

of different tests.

Let T (1) = {T (1)
N } and T (2) = {T (2)

N } be test sequences with efficacies c1 and

c2, respectively. Then the asymptotic relative efficiency (ARE) of T (1) relative to

T (2) is given by e(T (1), T (2)) = c2
1/c

2
2.

In order to evaluate the ARE of T D
N = TD

N (F ) and T̂N = T̂N(F ) , it is necessary

to specify F . For this purpose, let us suppose that {εt} is a sequence of i.i.d.(0,1)

random variables with continuous symmetric distribution F ∗ and density f ∗.

Then

F (x) = P (ε2
t ≤ x) =

⎧⎨
⎩ 2F ∗(

√
x) − 1, x > 0,

0, x ≤ 0.
(3.1)

We shall now compute (3.1) in the following particular choices of F ∗.

(i) F ∗ (Normal):

F ∗
N
(x) =

∫ x

−∞
(2π)−1/2e−t2/2dt, f ∗

N
(x) = (2π)−1/2e−x2/2, x ∈ R.
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In this case,

FN(x) = 2F ∗
N
(
√

x) − 1, fN(x) =
1√
2πx

e−x/2, x > 0.

(ii) F ∗ (Double exponential):

F ∗
DE

(x) =

∫ x

−∞

1

2
e−|t|dt = 1 − 1

2
e−x, f ∗

DE
(x) =

1

2
e−|x|, x ∈ R.

In this case,

FDE(x) = 1 − e−
√

x, fDE(x) =
1

2
√

x
e−

√
x, x > 0.

(iii) F ∗ (Logistic):

F ∗
L
(x) =

1

1 + e−x
, f ∗

L
(x) =

e−x

(1 + e−x)2
, x ∈ R.

In this case,

FL(x) =
1 − e−

√
x

1 + e−
√

x
, fL(x) =

e−
√

x

√
x(1 + e−

√
x)2

, x > 0.

Recalling the definition of μF (θ), σ2
F and σ2

1(F ) and assuming that μF (θ) is

continuously differentiable with respect to θ at HA : θ = 1 under the integral

sign, we have

μ′
F (1) =

1

2

∫
(F (x) − F (x + 1))2f ′(x + 1)dx

−
∫

f(x + 1)(f(x) + f(x + 1))(F (x) − F (x + 1))dx

so that the ARE of T D
N and T̂N between distributions F1 and F2 is

e(F2, F1) = c2
F2

/c2
F1

, (3.2)

where cF = μ′
F (1)/σ(F ), with σ(F ) = σ1(F ) and σF . In an attempt to evaluate

(3.2), we need to approximate values of σ2
F = σ2

F (Cx, Cy, k1, k2) for various m =

n = N/2 and parameters based on F = FN, FDE and FL. Set θ0 = θ0
x = θ0

y and

θ1 = θ1
x = θ1

y. Then, for θ0 = 1, θ1 = 0.1, 0.3, and m = n = N/2 = 100, 500, we
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generate realizations of Xt and Yt. Note that the above choice of parameter values

satisfies necessary conditions. On the basis of conditional least squares estimators

θ̂0
m and θ̂1

m of θ0 and θ1, respectively, the quantities Cx, Cy, k1 and k2 are estimated

by the corresponding averages. In the actual computation of μ′
F (1), σ2

1(F ) and

σ2
F , we evaluate the integrals by a rectangular numerical integration with n terms.

All the estimation results in the tables below are based on 100 replications. Table

1 provides these results.

Table 1. Approximate values of e(·, ·) for T D
N = TD

N (F ) and

T̂N = T̂N(F ) based on F = F∗

T̂N(F )

ARE TD
N (F ) m = n = 100, θ0 = 1 m = n = 500, θ0 = 1

θ1 = 0.1 θ1 = 0.3 θ1 = 0.1 θ1 = 0.3

e(FN, FDE) 1.3331 1.3067 1.3048 1.3062 1.3049

e(FN, FL) 0.7105 0.7237 0.7248 0.7240 0.7248

e(FDE, FL) 0.5330 0.5538 0.5555 0.5543 0.5554

A closer examination of the ARE values in Table 1 reveals some distinctive char-

acteristics. It is fairly clear that the values in Table 1 are stable with respect to

the choice of parameters and distributions, and m = n. We also observe that the

corresponding values for T D
N (F ) differ from those for T̂N(F ). These differences

are due to the effect of the ARCH volatility estimators θ̂0
m and θ̂1

m. In addition,

it is seen that the case of F = FL is more efficient than the other cases for all

chosen values of m = n and the parameters. However, the efficiency for F = FL

decreases as θ1 or m = n increases. We also observe that T̂N(F ) for F = FDE is

a strong competitor to that for F = FL when θ1 becomes small. Another point

worth noting is that T D
N (F ) and T̂N(F ) for F = FDE outperform that for F = FN

in all cases. A striking feature of this study agrees that this testing problem is

best in the case of heavy-tailed ARCH residual distributions.
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3.2 ARCH Volatility Effect

In this section, we study a distinction of T̂N = T̂N(F ) and T D
N = TD

N (F ) in terms

of their levels of test for two-sample location problem under HA : θ = 1 based on

F = FN, FDE and FL.

Suppose that N 1/2(TD
N − μF )/σ1(F )

d→ N (0, 1) holds. Then the test

N1/2(TD
N − μF )/σ1(F ) ≥ λα

has nominal asymptotic level α as N → ∞. We assume α to be less than 0.5 so

that λα > 0. For this λα, let

α̃N = P{N 1/2(T̂N − μF )/σF ≥ λα}.

Then α̃ = limN→∞ α̃N exists and is given by α̃ = 1 − Φ(λαδF ), where δF =

σ1(F )/σF . Since σF ≥ σ1(F ), we have α̃ ≥ α.

To distinguish how much the actual α̃ varies from the nominal α, we use the

level α = 0.05 for which λ0.05 = 1.645. Using the same values of σF and σ1(F )

for F = FN, FDE and FL, we provide the results in Table 2.

Table 2. Actual α̃ = 1 − Φ(λαδF ), δF = σ1(F )/σF , F = F∗

when nominal level α = 0.05 for which λ0.05 = 1.645

Distribution
m = n = 100, θ0 = 1 m = n = 500, θ0 = 1

θ1 = 0.1 θ1 = 0.3 θ1 = 0.1 θ1 = 0.3

δFN
0.9804 0.9790 0.9799 0.9790

α̃FN
0.0534 0.0536 0.0535 0.0537

δFDE
0.9902 0.9896 0.9900 0.9896

α̃FDE
0.0517 0.0518 0.0517 0.0518

δFL
0.9714 0.9694 0.9694 0.9714

α̃FL
0.0550 0.0554 0.0554 0.0554
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Table 2 shows that the values of α̃∗ are differ from the nominal α = 0.05 with

respect to the choice of parameters and distributions, and m = n. It is also seen

that these values tend to increase slightly as θ1 or m = n increases. Such an

increase is due to the asymptotics of the ARCH volatility estimators θ̂0
m and θ̂1

m.

In addition, it shows the effect of skewness on the level. As is typically the case

when F = F∗ is skewed to the right, α̃∗ > α for the lower-tail rejection region.

It should be pointed out that, in general, the closeness of α̃∗ to α depends not

only on the parameters but also on other aspects of F = F∗. We can therefore

say that the asymptotic level of T̂N is fairly different from that of T D
N because of

the ARCH specification effect.

3.3 Robustness Measures

Hampel’s influence function IFH is a heuristic tool which provides rich quan-

titative robustness information. It measures the sensitivity of a statistic T to

infinitesimal deviations from an underlying distribution F . In the following, we

introduce some measures which indicate a robustness of T̂N given by (2.12).

It was shown in the proof of Theorem 2 (see (4.1)) that

T̂N − μN = UN(Fm, Gn) + V1N(θ̂x,m; F,G) + V2N(θ̂y,n; F,G) + op(N
−1/2),

where

UN(Fm, Gn) = 2

{∫
s(x)d(Gn − G)(x) −

∫
s∗(x)d(Fm − F )(x)

}
,

V1N(θ̂x,m; F,G) = −2τT
x (θ̂x,m − θx)

∫
xf(x)(F − G)(x)dG(x)

and

V2N(θ̂y,n; F,G) = −2τT
y (θ̂y,n − θy)

∫
xg(x)(F − G)(x)dF (x).
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Let us first study a robustness of UN(Fm, Gn). To simplify the presentation,

assume that m = n = N/2. Then

UN(Fm, Gm) = 2

{∫
s(x)d(Gm − G)(x) −

∫
s∗(x)d(Fm − F )(x)

}
,

where

s(x) =

∫ x

x0

(F − G)(y)dF (y) and s∗(x) =

∫ x

x0

(F − G)(y)dG(y)

with x0 > 0 determined somewhat arbitrarily. As a measure of its robustness, we

can introduce the following influence function:

IFH(F,G) = lim
h↘0

UN{(1 − h)F + hδa, (1 − h)G + hδb}
h

,

where h ∈ (0, 1) and δt is the probability distribution with point-mass one at t.

Thus, we obtain

IFH(F,G) = 2{s(b) − s∗(a) +

∫
s∗(x)dF (x) −

∫
s(x)dG(x)},

Next, we discuss a robust property of V1N(θ̂x,m; F,G). Let us now consider

θ̂x,m. Write Sx,t = (X2
t , . . . , X2

t−px+1)
T and WSx,t = (1, ST

x,t)
T , and let S

(1)
x,t be the

first component of Sx,t. Then we can write θ̂Sx,m = Û−1
Sx

γ̂Sx , where

γ̂Sx =
1

m

m∑
t=2

S
(1)
x,t WSx,t−1 and ÛSx =

1

m

m∑
t=2

WSx,t−1W
T
Sx,t−1.

Since γ̂Sx and ÛSx are sample versions of

γSx = E(S
(1)
x,t WSx,t−1) and USx = E(WSx,t−1,W

T
Sx,t−1),

respectively, the corresponding functional of θ̂Sx,m is TSx ≡ U−1
Sx

γSx . Let us now

consider the following contaminated process

Sh
x,t = (1 − h)Sx,t + hKx,t = Sx,t + hLx,t, (say).

For Sh
x = {Sh

x,t}, we can introduce an influence function

T ′
Sx

= lim
h↘0

TSh
x
− TSx

h
.
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Noting the differential formula for matrix dZ−1 = −Z−1(dZ)Z−1, we obtain

d

dh
U−1

Sh
x

∣∣∣∣
h=0

= −U−1
Sx

(Δx + ΔT
x )U−1

Sx
, Δx = E

[(
0

Lx,t−1

)
W T

Sx,t−1

]
.

Also,

d

dh
γSh

x

∣∣∣∣
h=0

= E(L
(1)
x,tWSx,t−1) + E

[
S

(1)
x,t

(
0

Lx,t−1

)]
= γ′

Sx
, (say),

where L
(1)
x,t is the first component of Lx,t. Hence,

T ′
Sx

= U−1
Sx

(γ′
Sx

− (Δx + ΔT
x )TSx)

and similarly for V2N(θ̂y,n; F,G),

T ′
Sy

= U−1
Sy

(γ′
Sy

− (Δy + ΔT
y )TSy).

The quantities IFH(F,G), T ′
Sx

and T ′
Sy

will facilitate the fundamental description

of sensitiveness or insensitiveness of T̂N .

Returning to the setup of Section 3.1, we describe the quantitative information

for UN(Fm, Gm), V1N(θ̂x,m; F,G) and V2N(θ̂y,m; F,G) by computing IFH(F,G) =

I(F ), V1N (T ′
Sx

, F ) and V2N(T ′
Sy

, F ), respectively. Using the same realizations of

Xt and Yt for m = n = N/2 = 100, 500 and (θ0, θ1) = (1, 0.1), (1, 0.3), Tables 3

and 4 provide these results for F = FN, FDE and FL.

Table 3. Approximate values of I(F ), V1N(T′
Sx

, F ) and V2N(T′
Sy

, F )

for T̂N = T̂N(F ) based on various F = F∗ and m = n = 100, θ0 = 1

Distribution I(F )
V1N(T′

Sx
, F ) V2N(T′

Sy
, F )

θ1 = 0.1 θ1 = 0.3 θ1 = 0.1 θ1 = 0.3

FN 0.0350 0.0647 0.0193 0.0187 0.0096

FDE 0.0224 0.0364 0.0108 0.0105 0.0054

FL 0.0249 0.0517 0.0154 0.0149 0.0077
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Table 4. Approximate values of I(F ), V1N(T′
Sx

, F ) and V2N(T′
Sy

, F )

for T̂N = T̂N(F ) based on various F = F∗ and m = n = 500, θ0 = 1

Distribution I(F )
V1N(T′

Sx
, F ) V2N(T′

Sy
, F )

θ1 = 0.1 θ1 = 0.3 θ1 = 0.1 θ1 = 0.3

FN 0.0350 0.0390 0.0173 0.0263 0.0151

FDE 0.0224 0.0219 0.0098 0.0148 0.0085

FL 0.0249 0.0311 0.0138 0.0210 0.0121

An examination of the values in Tables 3 and 4 shows some interesting features

about the sensitivity of T̂N = T̂N(F ) for F = FN. First it is apparent that

the values are stable with respect to the choice of parameters, distributions and

m = n = N/2. It is also interesting to note that when θ1 increases, the values of

V1N(·, ·) and V2N(·, ·) tend to decrease for each m = n. This behavior depends not

only on the choice of parameters but also on other aspects of F∗. We summarize

by saying that T̂N is robust in terms of goodness of fit for such heavy-tail ARCH

residual distributions.

3.4 Real Data Analysis

To assess the usefulness of the asymptotic result obtained in chapter 2, the pro-

posed two-sample testing problem for location is applied to real data sets. The

data sets of interest are the daily stock return data points (m = n = 2000) of

AMOCO and IBM companies of New York Stock Exchange from February 2,

1984, to December 31, 1991.

For the ARCH residual distributions F = FN, FDE and FL, the asymptotic

relative efficiency, the ARCH volatility effect and the measure of robustness of

T̂N = T̂N(F ) are demonstrated numerically in Tables 5 − 7, respectively. Note

that the values in the tables are stable with respect to the choice of the distribu-
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tions. These results provide enough evidence in support of the simulation results.

We summarize by saying that the two-sample testing problem for location works

well in the case of heavy-tailed ARCH residual distributions.

Table 5. Estimated values of e(·, ·)
based on various F = F∗.

e(FN, FDE) e(FN, FL) e(FDE, FL)

1.2320 0.7646 0.6206

Table 6. Actual α̃ = 1 − Φ(λαδF ), δF = σ1(F )/σF , F = F∗

when nominal level α = 0.05 for which λ0.05 = 1.645

Distribution δF∗ α̃F∗

FN 0.9306 0.0629

FDE 0.9680 0.0557

FL 0.8970 0.0700

Table 7. Estimated values of V1N(T ′
Sx

, F )

and V2N(T ′
Sy

, F ) based on various F = F∗.

Distribution V1N(T ′
Sx

, F ) V2N(T ′
Sy

, F )

FN -0.0025 0.0023

FDE -0.0014 0.0013

FL -0.0020 0.0018
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Chapter 4

Proof

In this chapter we give the proof of Theorem 2.

Write F̂m = (F̂m −F ) + F , Ĝn = (Ĝn −G) + G and dĤN = d(ĤN −HN) + dHN .

Then the statistics (2.12) after a little simplification becomes

T̂N = μN + B1N + B2N + C1N + C2N + C3N ,

where

μN =

∫
(F − G)2dHN(x),

B1N =

∫
(F − G)2d(ĤN − HN)(x),

B2N = 2

∫
(F − G)((F̂m − F ) − (Ĝn − G))dHN(x),

C1N =

∫
((F̂m − F ) − (Ĝn − G))2dHN(x),

C2N =

∫
((F̂m − F ) − (Ĝn − G))2d(ĤN − HN)(x),

C3N = 2

∫
(F − G)((F̂m − F ) − (Ĝn − G))d(ĤN − HN)(x).

To establish the proof of this theorem, we proceed to show that:

(i) the term μN is finite,
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(ii) B1N + B2N has a limiting Gaussian distribution, and

(iii) the C∗ terms are uniformly of higher order.

Let us first show the statement (i). From (A.1), it is seen that∣∣∣∣
∫

(F − G)2dHN(x)

∣∣∣∣≤ K

∫ 1

0

HN(1 − HN)dHN(x) ≤ K < ∞.

Next we show the statement (ii). From (2.11) and integrating B1N by parts,

we observe that

B1N = −2

∫
(F − G)(ĤN − HN)d(F − G)(x)

= −2{λN

∫
(F − G)(Fm − F )d(F − G)(x)

+(1 − λN)

∫
(F − G)(Gn − G)d(F + G)(x)

+m−1/2λNAx

∫
xf(x)(F − G)(x)d(F − G)(x)

+n−1/2(1 − λN)Ay

∫
xg(x)(F − G)(x)d(F − G)(x)}

+ lower order terms.

Then, from (2.7), (2.9) and (2.11), we obtain

N1/2(B1N + B2N) = 2N 1/2

{∫
s(x)d(Gn − G)(x)

−
∫

s∗(x)d(Fm − F )(x)

−m−1/2Ax

∫
xf(x)(F − G)(x)dG(x)

−n−1/2Ay

∫
zg(z)(F − G)(z)dF (z)

}
+ lower order terms

= aN + bN + cN + dN + lower order terms, (say), (4.1)

where

s(x) =

∫ x

x0

(F − G)(y)dF (y) and s∗(x) =

∫ x

x0

(F − G)(y)dG(y)
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with x0 > 0 determined somewhat arbitrarily.

To compute the variance of (4.1), we shall first find a bound on the moments

of s(x) and s∗(x). Using (A.1) and the fact that dHN ≥ λ0dF , we see that

E{|s(x)|}2+δ ≤ K

∫ 1

0

(HN(1 − HN))1+ δ
2 dHN(x) ≤ K < ∞,

and similarly, we can establish that

E{|s∗(x)|}2+δ < ∞, 0 < δ ≤ 1.

We shall now find the variance of (4.1). Noting that aN and bN are mutually

independent random variables, and using the result by Chernoff and Savage (1958,

p.976), we obtain

σ2
1N = V ar(aN + bN). (4.2)

Similarly, we can compute the same for cN and dN by first observing Theorem 1

that

V ar(m1/2(θ̂x,m − θx)) = U−1
x RxU−1

x

and

V ar(n1/2(θ̂y,n − θy)) = U−1
y RyU−1

y .

Thus, recalling (2.8), (2.10) and (2.11), we get

σ2
2N = V ar(cN) and σ2

3N = V ar(dN). (4.3)

We next compute the covariance terms. Since {Xt} and {Yt} are independent,

we have only to evaluate

K1N = 2E(bNcN) and K2N = 2E(aNdN).

From (3.1), we obtain

K1N = −8λ−1
N

∫∫
E{m1/2(Fm − F )(x)Ax}ρf (x, y)dG(x)dG(y),

39



for which, it is necessary to find E{·}. Using the result by Horváth et al. (2001),

it follows from (2.8) and (2.13) that

E(m1/2(Fm − F )(x)Ax) = ψx(x)
∑

0≤i≤px

τx,iδx,i,

where ψx(x) is defined in Theorem 2. Thus,

K1N = −8λ−1
N

∑
0≤i≤px

τx,iδx,i

∫∫
ψx(x)ρf (x, y)dG(x)dG(y)

and similarly

K2N = 8(1 − λN)−1
∑

0≤i≤py

τy,iδy,i

∫∫
ψy(x)ρf (x, z)dF (x)dF (x).

Adding K1N and K2N produces ζN defined in Theorem 2.

Hence, using the term ζN , (4.2), (4.3), Theorem 1 and the central limit theo-

rems given by Horváth et al. (2001), we may conclude that

N1/2(B1N + B2N)/σN
d−→ N (0, 1) as N → ∞.

We finally show the statement (iii). For this, we need the following elementary

results (see Chernoff and Savage (1958, p.986)).

(E.1) dHN ≥ λNdF ≥ λ0dF .

(E.2) dHN ≥ (1 − λN)dG ≥ λ0dG.

(E.3) 1 − F ≤ (1 − HN)/λN ≤ (1 − HN)/λ0.

(E.4) 1 − G ≤ (1 − HN)/(1 − λN) ≤ (1 − HN)/λ0.

(E.5) F (1 − F ) ≤ HN(1 − HN)/λ2
N ≤ HN(1 − HN)/λ2

0.

(E.6) G(1 − G) ≤ HN(1 − HN)/λ2
0.

Let (αN , βN) be the interval SNε , where

SNε = {x : HN(1 − HN) > ηελ0N
−1}. (4.4)
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Then ηε can be chosen independently of F , G, and λN so that

P [ε2
t ∈ SNε , t = 1, . . . ,m, ξ2

t ∈ SNε , t = 1, . . . , n] ≥ 1 − ε.

Let us first evaluate the random variable C1N . Using (2.7) and (2.9), we

obtain

C1N =

∫
((Fm − F ) − (Gn − G))2dHN(x)

+2m−1/2Ax

∫
xf(x)(Fm − F )(x)dHN(x)

−2m−1/2Ax

∫
xf(x)(Gn − G)(x)dHN(x)

−2n−1/2Ay

∫
xg(x)(Fm − F )(x)dHN(x)

+2n−1/2Ay

∫
xg(x)(Gn − G)(x)dHN(x)

+m−1A2
x

∫
x2f 2(x)dHN(x)

+n−1A2
y

∫
x2g2(x)dHN(x)

−2m−1/2n−1/2AxAy

∫
(xf(x))(xg(x))dHN(x)

+ lower order terms

=
8∑

i=1

C1iN + lower order terms, (say).

We first deal with C11N . In what follows, we mean that all mathematical relations,

e.g., ≤, = etc. hold with probability 1− ε. Since {Xt} and {Yt} are independent,

it follows from (E.5), (E.6) and (4.4) that

E(|C11N |) =
1

N

∫
SNε

[
1

λN

F (1 − F ) +
1

1 − λN

G(1 − G)

]
dHN(x)

≤ K

N

∫
SNε

HN(1 − HN)dHN(x)

=
1

N
O[(HN(βN)(1 − HN(βN)))2] = o(N−1). (4.5)
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Therefore, by the dominated convergence theorem, we have C11N = op(N
−1/2).

Next we turn to C12N , for which, it suffices to show∫
SNε

{∫ x

x0

yf(y)dHN(y)

}
d(Fm − F )(x) = op(1). (4.6)

In view of (A.1)-(A.3) and (4.4), we see that (4.6) is dominated by∫
SNε

{∫ x

x0

|yf(y)|dHN(y)

}
|d(Fm − F )(x)|

≤ K

∫
SNε

{∫ x

x0

HN(y)(1 − HN(y))dHN(y)

}
|d(Fm − F )(x)|

≤
∫

SNε

O[(HN(x)(1 − HN(x)))2]|d(Fm − F )(x)|

= m−1/2

∫
SNε

O(N−2)|d(m1/2(Fm − F )(x))|

= op(1) (e.g., Puri and Sen (1993), Theorem 2.11.6), (4.7)

which, together with the fact (m−1/2|Ax|) = Op(m
−1/2), implies C12N = op(N

−1/2).

The proof for C13N = C14N = C15N = op(N
−1/2) is analogous to (4.7). Now we

consider C16N . Following the arguments of (4.5) and (4.7), it is seen that

|C16N | ≤ m−1|Ax|2
∫

SNε

|xf(x)|2dHN(x)

≤ Op(m
−1)

∫
SNε

(HN(1 − HN))2dHN(x) = op(N
−1), (4.8)

hence, we have C16N = op(N
−1/2). To complete the assertion for C1N , we can

similarly show C17N = C18N = op(N
−1/2). Consequently, we have

C1N = op(N
−1/2).

Next we deal with C2N . Recalling (2.12), we obtain

C2N =

∫
((F̂m − F ) − (Ĝn − G))2d(HN − HN)(x)

+m−1/2λNAx

∫
((F̂m − F ) − (Ĝn − G))2d(xf(x))

+n−1/2(1 − λN)Ay

∫
((F̂m − F ) − (Ĝn − G))2d(xg(x))

+ lower order terms

= C21N + C22N + C23N + lower order terms, (say),
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where (HN − HN)(x) = λN(Fm − F )(x) + (1 − λN)(Gn − G)(x). Let us first

evaluate C21N . By analogy with the first C term, we have

C21N =

∫
((Fm − F ) − (Gn − G))2d(HN − HN)(x)

+2m−1/2Ax

∫
xf(x)(Fm − F )(x)d(HN − HN)(x)

−2m−1/2Ax

∫
xf(x)(Gn − G)(x)d(HN − HN)(x)

−2n−1/2Ay

∫
xg(x)(Fm − F )(x)d(HN − HN)(x)

+2n−1/2Ay

∫
xg(x)(Gn − G)(x)d(HN − HN)(x)

+m−1A2
x

∫
x2f 2(x)d(HN − HN)(x)

+n−1A2
y

∫
x2g2(x)dHN − HN)(x)

−2m−1/2n−1/2AxAy

∫
(xf(x))(xg(x))d(HN − HN)(x)

+ lower order terms

=
8∑

i=1

C21iN + lower order terms, (say).

Let us first consider C211N . Since {Xt} and {Yt} are independent, we have only

to evaluate

E(|C211N |) = E

{
λN

∫
SNε

(Fm − F )2d(Fm − F )(x)

+(1 − λN)

∫
SNε

(Gn − G)2d(Gn − G)(x)

}
.

From the result by Chernoff and Savage (1958, p.990) and (4.5), it follows that

E(|C211N |) =
1

N2

[
1

λN

∫
SNε

(1 − F )(1 − 2F )dF (x)

+
1

1 − λN

∫
SNε

(1 − G)(1 − 2G)dG(x)

]

≤ K

N2

∫
SNε

dHN(x) = o(N−1),

43



which implies C211N = op(N
−1/2). Next we consider C212N , which on integrating

by parts gives

C212N = m−1/2Ax{−λNC∗
212N + 2(1 − λN)C∗∗

212N},

where

C∗
212N =

∫
SNε

(Fm − F )2d(xf(x)),

C∗∗
212N =

∫
SNε

xf(x)(Fm − F )(x)d(Gn − G)(x).

Let us first deal with C∗
212N . From (A.2), (A.4) and (4.5), it follows that

E(|C∗
212N |) ≤ 1

cNλN

∫
SNε

F (1 − F )dF (x)

≤ K

N

∫
SNε

HN(1 − HN)dHN(x) = o(N−1). (4.9)

Next we turn to C∗∗
212N . Since {Xt} and {Yt} are independent, we have

E(C∗∗
212N ) = E[E(C∗∗

212N |ξ2
1 , . . . , ξ

2
n)] = 0, E[(C∗∗

212N )2|ξ2
1 , . . . , ξ

2
n] = C∗∗∗

212N ,

C∗∗∗
212N =

2

m

∫∫
x,yεSNε

x<y

xyf(x)f(y)F (x)(1 − F (y))d((Gn − G)(x)(Gn − G)(y)),

E(|C∗∗∗
212N |) ≤ 2

mn

∫∫
x,yεSNε

x<y

|xyf(x)f(y)|F (x)(1 − F (y))dG(x)dG(y)

≤ K

N2

∫∫
x,yεSNε

x<y

|xyf(x)f(y)|HN(x)(1 − HN(y))dHN(x)dHN(y)

≤ K

N2

∫∫
0<x<y<1

x2(1 − x)y(1 − y)2dxdy = o(N−1). (4.10)

Thus, using the dominated convergence theorem, (m−1/2|Ax|) = Op(m
−1/2), (4.9)

and (4.10), we have C212N = op(N
−1). The proof for C213N = C214N = C215N =

op(N
−1) can be handled similar to C212N . Now we turn to evaluate C216N , where

C216N = m−1A2
x{λNC∗

216N + (1 − λN)C∗∗
216N} (4.11)
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with

C∗
216N =

∫
SNε

(xf(x))2d(Fm − F )(x),

C∗∗
216N =

∫
SNε

(xf(x))2d(Gn − G)(x).

Following the arguments of (4.7), we can easily show C∗
216N = C∗∗

216N = op(1),

which, together with (m−1|Ax|2) = Op(m
−1), implies C216N = op(N

−1). Similarly,

we can prove C217N = C218N = op(N
−1). Hence, we have C21N = op(N

−1/2).

Next we consider C22N . In the same way as for C1N , we obtain

C22N = m−1/2λNAx

∫
((Fm − F ) − (Gn − G))2d(xf(x))

+2m−1λNA2
x

∫
xf(x)(Fm − F )(x)d(xf(x))

−2m−1λNA2
x

∫
xf(x)(Gn − G)(x)d(xf(x))

−2m−1/2n−1/2λNAxAy

∫
xg(x)(Fm − F )(x)d(xf(x))

+2m−1/2n−1/2λNAxAy

∫
xg(x)(Gn − G)(x)d(xf(x))

+m−3/2λNA3
x

∫
x2f 2(x)d(xf(x))

+m−1/2n−1λNAxA2
y

∫
x2g2(x)d(xf(x))

−2m−1n−1/2λNA2
xAy

∫
(xf(x))(xg(x))d(xf(x))

+ lower order terms

=
8∑

i=1

C22iN + lower order terms, (say).

Let us first consider C221N = m−1/2λNAxC
∗
221N , where

C∗
221N =

∫
((Fm − F ) − (Gn − G))2d(xf(x)).

Recalling (A.2), (A.4) and (4.7), we obtain

E(|C∗
221N |) ≤ 1

cN

∫
SNε

[
F (1 − F )

λN

+
G(1 − G)

1 − λN

]
dF (x)

≤ K

N

∫
SNε

HN(1 − HN)dHN(x) = o(N−1).
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Therefore, by the dominated convergence theorem and (m−1/2|Ax|) = Op(m
−1/2),

we have C221N = op(N
−1). Next we evaluate C222N , which on integrating by parts

produces C222N = −m−1λNA2
xC

∗
222N , where

C∗
222N =

∫
SNε

(xf(x))2d(Fm − F )(x). (4.12)

Using the result of (4.11), it follows that C∗
222N = op(1), which implies C222N =

op(N
−1). Similarly we can prove C223N = op(N

−1). We now turn to evaluate

C224N . Now using (A.2)-(A.4) and (4.7), it is easy to show∫
SNε

{∫ x

x0

yg(y)d(yf(y))

}
d(Fm − F )(x) = op(1),

which, combined with (m−1/2n−1/2|Ax||Ay|) = Op(m
−1/2n−1/2), entails C224N =

op(N
−1). Similarly, we can prove C225N = op(N

−1). Next, we consider C226N . In

view of (A.2)-(A.4) and (4.8), we see that

|C226N | ≤ Op(m
−3/2)

∫
SNε

(HN(1 − HN))2dF (x) = op(N
−1).

Thus, C226N = op(N
−1/2). Similarly, we can prove C227N = C228N = op(N

−1/2).

Hence, we have C22N = op(N
−1/2). The proof of C23N = op(N

−1/2) follows

precisely on the same lines as that of C22N . Consequently, we have

C2N = op(N
−1/2).
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Finally we evaluate C3N . By analogy with the second C term, we obtain

C3N = 2

∫
(F − G)(Fm − F )d(HN − HN)(x)

−2

∫
(F − G)(Gn − G)d(HN − HN)(x)

+2m−1/2Ax

∫
xf(x)(F − G)(x)d(HN − HN)(x)

−2n−1/2Ay

∫
xg(x)(F − G)(x)d(HN − HN)(x)

+2m−1/2λNAx

∫
(F − G)(Fm − F )d(xf(x))

−2m−1/2λNAx

∫
(F − G)(Gn − G)d(xf(x))

+2n−1/2(1 − λN)Ay

∫
(F − G)(Fm − F )d(xg(x))

−2n−1/2(1 − λN)Ay

∫
(F − G)(Gn − G)d(xg(x))

+2m−1λNA2
x

∫
xf(x)(F − G)(x)d(xf(x))

−2n−1(1 − λN)A2
y

∫
xg(x)(F − G)(x)d(xg(x))

−2m−1/2n−1/2λNAxAy

∫
xg(x)(F − G)(x)d(xf(x))

+2m−1/2n−1/2(1 − λN)AxAy

∫
xf(x)(F − G)(x)d(xg(x))

+ lower order terms

=
12∑
i=1

C3iN + lower order terms, (say).

Let us first consider C31N , which on integrating by parts yields

C31N = λN(C∗
31N − C∗∗

31N) + 2(1 − λN)C∗∗∗
31N ,

where

C∗
31N =

∫
SNε

(Fm − F )2dG(x),

C∗∗
31N =

∫
SNε

(Fm − F )2dF (x),

C∗∗∗
31N =

∫
SNε

(F − G)(Fm − F )d(Gn − G)(x).
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Recalling (4.10) and (4.11), we can easily show C31N = op(N
−1/2), and analo-

gously C32N = op(N
−1/2). Next we turn to evaluate

C33N = 2m−1/2Ax{λNC∗
33N + (1 − λN)C∗∗

33N},

where

C∗
33N =

∫
SNε

xf(x)(F − G)(x)d(Fm − F )(x),

C∗∗
33N =

∫
SNε

xf(x)(F − G)(x)d(Gn − G)(x).

Using (A.1)-(A.3) and (4.12), we can show C∗
33N = C∗∗

33N = op(1), which, combined

with (m−1/2|Ax|) = Op(m
−1/2), implies C33N = op(N

−1/2). The proof for C34N =

op(N
−1/2) can be handled similarly. Now we turn to C35N , for which, it suffices

to show ∫
SNε

{∫ x

x0

(F − G)(y)d(yf(y))

}
d(Fm − F )(x) = op(1). (4.13)

In view of (A.1), (A.2), (A.4) and (4.7), it is seen that (4.13) is dominated by∫
SNε

O[(HN(x)(1 − HN(x)))3/2]|d(Fm − F )(x)|

= m−1/2

∫
SNε

O(N−3/2)|d(m1/2(Fm − F )(x))| = op(1).

Therefore, C35N = op(N
−1/2). Similarly, we can show C36N = C37N = C38N =

op(N
−1/2). Now consider C39N . From (A.1)-(A.4) and (4.8), we obtain

|C39N | ≤ Op(m
−1)

∫
SNε

(HN(1 − HN))3/2dF (x) = op(N
−1),

hence, C39N = op(N
−1/2). Similarly we can show C310N = C311N = C312N =

op(N
−1/2). Consequently, we have

C3N = op(N
−1/2).

This completes the proof of the theorem.
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Chapter 5

Conclusion

This chapter provides the concluding remarks to the thesis. It also gives a brief

overview of the related research that can be carried out in future by reformulating

the results obtained in this thesis. Moreover it also discusses some implication

and application aspects of the results.

In this thesis, we have derived the limiting Gaussian distribution of the two-

sample Cramér-von Mises Statistics {T̂N} for ARCH residual empirical processes

based on the techniques of Chernoff and Savage (1958) and Horváth et al. (2001).

More concretely, we concluded that N 1/2(T̂N −μN)/σN
d−→ N (0, 1) as N → ∞,

that is T̂N is normally distributed with mean μN and variance σ2
N .

Under the null hypothesis H0 : F = G, we observe σ2
N = 0, which indicates

that we do not have a normal limit. However, NT̂N has a non-normal limit and

this is the analogue result given by Anderson (1962).

It may be noted that the above results can easily be reformulated to the case

of the one-sample as well as c(≥ 2)-sample problem and that the same result

is true for GARCH processes as well, using the result by Berkes and Harváth

(2003).
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Finally the results obtained are widely used to study the asymptotic power

and power efficiency of a class of two-sample tests. Thus the study motivates us

to consider two independent samples from ARCH(p) processes as stated in section

1.5. For instance, let {Xt} be a data set for the stock market in Australia and

let {Yt} be another data set for the stock market in New Zealand with possibly

non-Gaussian distributions F and G. In order to highlight the possible differences

between these two sets of data, a nonparametric technique is used based on the

two-sample Cramér-von Mises statistics. These statistics serve as a basis for the

comparison in terms of tests of goodness of fit.
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